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1. Tecsical Progress During Period July 1, 1983 - June 30, 1984

This report period covers the second year of our research program on the ,

foundations of knowledge-based reasoning, with particular reference to

diagnostic, design and information retrieval tasks. We will proceed in this

interim report by first giving an outline of our general approach, then

briefly describe some problems in which we have made progress during the year.

We will enclose as appendices some papers which further describe some of our

accomplishments in greater detail. These papers typically have either

appeared in the literature during the year or will shortly appear.

2. Our Conceptual Approach

The primary focus of our work is on analyzing knowledge-based problem

solving in information processing terms, i.e., in terms which highlight what

kinds of information is being input to a reasoning process and is being output

by it, rather than in terms of the tools which are used to implement an expert

system. Analysis in terms of the latter will typically talk in terms of

"rule-based system"s, "frame-based systems," or "prolog systems," etc., while

we would talk about the nature of the tasks themselves: "the classificatory

task," the "abduction task," etc. The latter level of analysis enables us to

isolate the terms and relations that characterize the essence of the knowledge

structures that are needed to perform the variety of tasks that knowledge-

based reasoning is capable of handling.

Our emphasis on the close relationship between the knowledge structures and

the information processing for various tasks has increasingly taken us away

from the earlier generation of expert system theories which separate the

knowledge base from the inference engine. Our systems tend to be highly

organized symbolic structures built up of active specialized knowledge-using

* agents.

The search for the fundamental types of knowledge-based problem solving has

.-9.o .;
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led us to think in terms of teneric inforzin on.ipa esa. tasks. The basic

idea is that each fundamental type of problem solving activity accomplishes a

certain generic task, and has its own characteristic way of using knowledge.

A grasp of the "atoms" of intelligent information processing should provide

the basic building blocks out of which more complicated forms of intelligent

problem-solving can be built.

We have identified several such generic tasks from our work on medical

reasoning and reasoning about mechanical devices. Diagnostic (classificatory)

problem solving, a particular form of predictive reasoning, a form of

knowledge-directed data retrieval, and a form of design activity are examples

of distinct problem solving types. We make no claim that these types are

exhaustive, in fact as our research proceeds we expect that we will identify

more generic types.

This theory of generic types of problem solving is discussed more fully in

[6]. The basic idea is that a complex task is broken down into a number of

generic subtasks, and each subtask is then solved by an appropriately

organized commanity of specialists. That is, the knowledge structure

corresponding to a problem solving type can be decomposed into a number of - P.

ualists, who cooperate in solving that class of problems. We have

developed approaches for a number of problems based on this overall approach.

Our work on these theoretical ideas is presented in [8, 1] and [5]. -

Recently we have been concerned with developing deep models of expert

reasoning. Most of the diagnostic systems that have been developed in

medicine and other domains have been called "compiled" or "shallow" knowledge - a

systems, pointing out that the knowledge base encodes in a fairly direct way

the relationships between findings and hypotheses. Yet often a human expert's

knowledge of how the device functions is used to generate new relationships

during the reasoning process. So far we have developed a primitive language



0

3

for representing the functioning of devices, and a "compiler" capable of

building a diagnostic problem-solver from a device representation made in this

language [7, 10].

We made progress on a number of problem areas during the year under report.

We outline the projects and the basic ideas in the next few sections. As

mentioned earlier, we have also added appendices consisting of papers written

by us during the year which give the research progress in greater detail.

3. Project Progress Reports

3.1. A Method for Representing the Functional Organization of Devices which
Supports the Automatic Compilation of Diagnostic Systems "

V. Sembugamoorthy and B. Chandrasekaran

Human experts often use in their problem solving a deeper understanding of

their knowledge domain than has been captured in the first generation of

expert systems. We have developed a representation for one aspect of this

deeper knowledge, corresponding to an expert's understanding of how the

functioning of a complex device results from its structural properties. We

have built a compiler which automatically generates a diagnostic expert system

from this functional representation of a device [10].

The first idea is that an agent's understanding of how a device works is

organized as a representation that shows how an intended function is

accomplished as series of behavioral states of the device, and how each

behavior state transition can be understood as either due to a function of a

component, or in terms of further details of behavior states. This can be

repeated at several levels so that ultimately all of the functions of a device .7-

can be related to its structure and the functionality of the components in the

structure. For example, the function that we may call "buzz" of a household
ebb selectric buzzer may be represented as:..-1!

K -S!!ii
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FUNCTION: Buzz TOMAKE buzzing(buzzer) IF pressed (switch)*
by behaviorl

and the relevant behavior, behaviorl, can be represented as:

BEHAVIOR: behaviorl:

Pressed(svitch)*

I BY behaviorl
V

(Clapper electrical connection alternates}

I USING-FUNCTION mechanical OF
I clapper
V

Repeated-Hit(Clapper)

USING-FUNCTION electrical OF
I clapper
V

Buzzing(Clapper)
III ., .-

Buzzing(Buzzer)

Intuitively what is being said here is that the Buzz function is
-

accomplished when, if the switch is pressed, the buzzer goes to a state called

"buzzing," and this is accomplished by a series of behavioral states that is

named behaviorl. Behaviorl says that the buzzer, on the occasion of the

D switch being pressed, goes to a state where the electrical connections in the

clapper alternately close and open, which results in the state where the

clapper is repeatedly hit, which results in the buzzer being in the state of

buzzing. Each transition is further explained, either in terms of further

details in the state transition, or in terms of the functions of the

components. For example, the transition from the clapper being alternately

electrically connected and disconnected, to its being in the repeated-hit

state, is explained by relating it to the mechanical function of the clapper.

- - -
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Let us see how this fragment of functional representation can be used to

generate a piece of diagnostic knowledge that may be used by a diagnostic -

expert system. A diagjnostic coun1ier will function as follows. Suppose a

buzzer does not buzz when its switch is pressed. In order to find out what

malfunctions are causing this, the diagnostic compiler will reason thus on the . 0

basis of the functional specification and the behaviorl specification: The

functional specification tells it that the problem is in behaviorl, since the

Buzz function is failing. Behaviorl, on examination, can result in a series

of hypotheses: .

R1: If switch is pressed, but the clapper is not alternately electrically

connected and disconnected, problem is in behavior2.

R2: If switch is pressed, the clapper's electrical connectivity alternates,

but the clapper doesn't hit-repeatedly, the cause of buzzer not buzzing is

mechanical malfunction of the clapper.

The power of this method for representing how a device works is due in - -

large measure to explicitly distinguishing five aspects of an agent's

understanding of the device, and treating each aspect appropriately. The _ .

distinctions are made at every level of organization on which the device is

represented. The five aspects are:

- STRUCTURN- this specifies the relationships between components. -

- V UUNMON - this captures the intended purpose of a device or
component, specified as WHAT the response is to a stimulus.

- BI&VIOR - this specifies HOW, given a stimulus, the response is
accomplished. 0.

- GuRC MINUM - chunks of deeper causal knowledge that have been
compiled from various domains to enable the specification of
behavior.

- ASSMTIMOh - other specifications of the conditions under which S
various behaviors or conditions occur.
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Directions for future research include the following: We need to develop

methods to check the correctness/consistency of a given device representation.

We need to investigate the design of two other needed dimensions of device

representation, namely the temporal dimension and interactions of functional

units by way of feedback and communication. Also the causal dimension, which

we have discussed, has to be integrated with the other two in a disciplined,

practically useful, and cognitively meaningful framework. We need to identify

the compilation processes that come into play to generate other types of

expert problem solving structures, such as those that can predict the

functional and behavioral consequences of changes of structure.

In broader terms, This work is part of our on-going effort to uncover the

multiplicity of generic structures and processes involved in knowledge-based

problem solving. Whether or not one accepts the hypothesis that homogeneous

and unitary architectures such as production systems are adequate at the level

of symbol processing in the mind, we nevertheless believe that in order to

account for knowledge-based problem-solving activity at the information

processing level, there is a need to identify a richer collection of generic

knowledge structures and a correspondingly rich collection of knowledge-

processing mechanisms that operate on them.

We enclose as Appendix A a paper that describes the problem and our

approach in greater detail. This paper is being prepared for submission to

journals, and is an elaboration of a paper presented at the 1983 Joint

Services Workshop on Al Applications to Diagnosis and Maintenance that was

held in Boulder, Col.

3.2. Expert Systems for Design Problem-Solving using Design Refinement with

Plan Selection and Redesign

David C. Brown and B. Chandrasekaran

This research is concerned with the design of mechanical components, and
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views design as a problem-solving activity. The theory explains the activity

of a human designer when solving a problem that falls into a particular S

subclass of mechanical design. An expert system called AIR-CYL has been

implemented that embodies the theory. The system will design a particular

type of Air-cylinder according to some set of user given requirements. The

behavior of the system closely follows that of the human designer.

Design activity in general has many components; such as planning, the use

of prestored plans, refinement of descriptions and the use of large amounts of

knowledge. Not all designing involves all of these. We have established

three classes of design activity which vary according to their problem-solving

components. Our work refers only to the third class, which requires that at

every stage of the design the designer knows both what sequences of design

steps are appropriate and also what knowledge is required. The theory

hypothesizes that such activity is organized around a hierarchy of concepts,

where each concept is active in the design, and may be considered to be a

specialist about some portion of the design. The hierarchy reflects the way

that the designer thinks of the object during design, and it shapes the design

process.

Each Specialist has its own set of Plans from which to select depending on

the current stage of the design. The plans may request portions of the design

from other specialists lower in the hierarchy, or may use Tasks to make small

additions to the design itself. Tasks use Steps to decide the value of each

attribute for which it is responsible. For example, a hole might be designed

by a Task, while a Step would decide the radius. Constraints may be planted

at any point in order to test the validity of the design. The Design Data- M-

base contains the current state of the design and a record of its progress,

plus the collected requirements from the user. Each task suggests changes to

the design, and when it is satisfied that they are locally coherent it

produces an Update which alters the state of the design.

. * . -. -
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The complete design process proceeds by first obtaining and checking

requirements for consistency. It then does rough-design to establish whether

full design is worth pursuing. If the rough-design succeedso then the full

design is attempted by requesting a design from the top-most specialist. The

rough-design hierarchy consists of only the upper portion of the design -

hierarchy. Comunication between active design agents is done by passing

messages that give instructions and report on success or failure. This is the

only way that a specialist can know what has occurred at lower levels.

If a step fails due to a failing Constraint a redesign phase is entered

until the problem can be fixed and design can continue. Step failure can lead

to task failure and subsequently to specialist failure. The redesign process

is controlled by Suggestions about what might fix the problem. These

suggestions are produced by each agent that fails. Suggestions are examined

by a redesign strategy in the agent immediately above the failing agent.

Appropriate measures are then taken to follow the suggestions in order to

correct the problem. Different types of agents have different strategies.

This results in backing-up over prior design decisions in a manner which is

dependency-based by suggestion. The change/update mechanism of the design

data-base supports the redesign phase.

To facilitate the building of the AIR-CYL system, and class 3 design

problem-solvers in general, a language has been provided in which to declare

design agents and describe plans. The Design Specialists and Plans Language

(DSPL) has been used to capture the Air-cylinder design knowledge. The system

takes about 5 minutes to design an Air-cylinder given 20 requirements.

We have presented an approach to building expert systems for a particular

class of design activity in the domain of mechanical components. Much work

remains to be done in this area before we fully understand what design is and

* how best to build systems to do it. However we feel that by using an

'. I1
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hierarchically structured system of conceptual specialists with plan selection

I and failure handling we have captured the essential qualities of routine

design, while discovering many interesting and difficult issues.

We enclose as Appendix B a paper [2] that describes our approach to design

S problem solving in greater detail. This paper will appear in the proceedings

of the IFIP WG5.2 Conference on Knowledge Engineering in Computer-Aided

Design, Budapest, Hungary.

3.3. CSRL: A Language for Designing Diagnostic Expert Systems

Tom Bylander, B. Chandrasekaran, Sanjay Mittal1, and Jack W. Smith I
r Many kinds of problem solving for expert systems have been proposed within

the AI community. Whatever the approach, there is a need to acquire the

knowledge in a given domain and implement it in the spirit of the problem

solving paradigm. Reducing the time to implement a system usually involves

* the creation of a high level language which reflects the intended method of

problem solving. For example, MCIN was created for building systems based

• on MYCIN-like problem solving. Such languages are also intended to speed up

the knowledge acquisition process by allowing domain experts to input

knowledge in a form close to their conceptual level. Another goal is to make

it easier to enforce consistency between the expert's knowledge and its

"- implementation.

• .CSRL (Conceptual Structures Representation Language) is a language for

implementing expert diagnostic systems that are based on our approach to

* diagnostic problem solving [3]. In this approach, diagnostic reasoning is one

of several generic tasks, each of which calls for a particular organizational

and problem solving structure. This approach is an outgrowth of our group's

'Currently at Knowledge Systems Area, Xerox PARC, 3333 Coyote Hill Rd., Palo
*.'" Alto, CA 94304 USA

1.
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experience with MDX, a medical diagnostic program, and with applying HDX-like

problem solving to other medical and non-medical domains.

A diagnostic structure is composed of a collection of specialists, each of

which corresponds to a potential hypothesis about the current case. They are

organized as a classification or diagnostic hierarchy, e.g., a classification

of diseases. A top-down strategy called establish-refine is used in which

either a specialist establishes and then refines itself, or the specialist

rejects itself, pruning the hierarchy that it heads.

CSRL facilitates the development of diagnostic systems by supporting

constructs which represent diagnostic knowledge at appropriate levels of

abstraction. Message nrocedures describe the specialist's behavior in ...

response to messages from other specialists. Knowledge grouvs determine how

data relate to features of the hypothesis. Rule-ike knowledge is contained

within knowledge groups. See [4] for a discussion on encoding diagnostic -

knowledge in CSRL in the medical domain.

We have used CSRL in the implementation of two expert systems. Auto-Mech

is an expert system which diagnoses fuel problems in automobile engines [12].

It consists of 34 specialists in a hierarchy which varies from 4 to 6 levels

deep. Red is an expert system whose domain is red blood cell antibody

identification [111. CSRL is used to implement specialists corresponding to

each antibody that Red knows about (around 30 of the most common ones) and to

each antibody subtype.

Appendix C is a paper that will appear in International Journal of - -

C uers i M mtic., special issue on AI applications. This describes

the CSRL language in greater detail. CSRL has been implemented in two

environments: UCI-Rutgers Lisp in Tops 20 for the DEC20 series, and for the

Interliep/Loops environment that runs on the Xerox family of Lisp machines. -.
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3.4. Using Consolidation for Reasoning about the Behavior of Physical Systems

Tom Bylander o

A recent AI approach for reasoning about the behavior of physical systems

is qualitative simulation. The structure of the physical system, and

knowledge about the behavior of its components are used to derive a collection

of constraints. Using these constraints, the simulation is performed and its

results are interpreted.

This research investigates a new method of reasoning for this problem which

we call consolidation.

The major processing sequence of consolidation is to hypothesize a

composite component consisting of a selected subset of components, and then to A

infer the behavior of the composite from the behaviors of the components.

Successful application of this sequence on increasingly larger composite

components results in inferring the behavior of the whole system. As a

byproduct, a hierarchical behavior structure is produced which explains how

the overall behavior is caused by the components' behavior. Also note that

each reasoning step is localized over a small number of components and

subsystems, avoiding the global problem solving required for qualitative

simulation.

This research also proposes a novel representation for behavior. Current

theories describe behavior as arithmetic constraints on variables and their

derivatives, which would imply that consolidation is purely a matter of

mathematical manipulation. Instead, we describe the behavior of a component

by the actions that the component performs upon "substances," e.g., fluids, *

electric currents, control activations, or other stuff that can potentially

move. We claim that there is a small set of behavior schema which can .

directly represent these actions, and which allow inferences about the

behavior of composite Components. Example schema include: permitting a

.-- S .
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substance to move from one place to another, and influencing a substance to

move. A behavior can be hypothesized based on patterns of other behaviors. S

Its existence is confirmed, and its parameters are determined using knowledge

about the physics of the substance being acted upon. Consolidation controls

the inference of behavior by specifying the context (the composite component) .

in which inference can take place.

We are implementing a version of consolidation, which will depend upon a

few simplifying assumptions. The structural description will be limited to

connection of components and containment of substances, thus reducing the

amount of spatial reasoning required. Numerical attributes of behaviors (such

as amount of influence or rate of movement) will be specified qualitatively.

The qualitative language used will be similar to that developed by Kuipers

[9], and will also include a simple temporal component for expressing the

sequence of events. We hope to discover the limits of consolidation under

these assumptions, and to learn how more complex spatial and temporal --

reasoning can be integrated into this process.

4. Computing Enviromet

We are also in receipt of another AFOSR grant (Grant AFOSR 83-0300), under

the DOD-University Research Instrumentation Program, for a Lisp machine

facility for expert systems research. During the year under report, we

acquired for Xerox 1108 Lisp machines, which are currently connected in an D

ethernet configuration with each other and with a VAX 11/780. Much of the

research for the AFOSR research program is moving to this environment from the

earlier DEC20/60 UCI-Rutgers Lisp one. During the year, we implemented the

CSRL language (see section 3.3) in this new environment, and have used it to

implement a number of prototype diagnostic systems.
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ABSTACT

Most of the diagnostic systms that have been developed in medicine as well

as other domains can properly be called "compiled" knowledge systems in the

sense that the knowledge base contains the relationships between symptoms and

malfunction hypotheses in some form. Bovever, often in human reasoning, an

expert's knowledge of how the device "functions" is used to ensuate neow

relationships during the reasoning process. This deeper level representation

which can be processed to yield more compiled diagnostic structures is the

concern of this paper. Using the example of an household buzzer, we show in

this paper what our functional representation of a device looks like. We

discuss the nature of the compilation process that can produce the diagnostic

expert from this deeper representation. We also outline how another form of

problem solving, v .. , predicting consequences to device functionality of

changes in the structure of a device, can also be supported by this

representation.
-S

1. Ntivation

The work to be described in this paper can be motivated by reference to a

number of issues that have recently attracted attention in knowledge-based S

* reasoning. Three of them are as follows:

1. What does it mean to understand how a device works; in particular,

o.3
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to understand how its funcio is related to and arises from its
structure? Row to represent the result of this understanding in
such a way that this representation can be used to support problem
solving, such as trouble-shooting a malfunctioning device, or to
predict consequences to device functionality of changes in its
structure? With human beings at least, it seems reasonable to
ezpect a person who claims to understand how a device works to be
able to engage in the above forms of problem solving tasks. Some
recent work in artificial intelligence [5, 6, 11! deals with these
issues. In the context of this set of research iseues, our goal in
this paper is to present a framework for approaching this problem,
to describe a language f or representing functioning of a class of
devices, and to show how this representation can support problem
solving of the types mentioned above.

2. A related concern, especially in the literature on systems f or
medical diagnosis, has been on causal reason . Typically this
has meant representing detailed causal relationships between
pathophysiological states that underlie a disease process and using
this inforation to make conclusions about disease entities, given
symptomatic information. The work in [13] and [14] exemplify this
approach. Such representations have been called djee models

[9, 12], i oontrast to systems, such as MCIN, whose knowledge
base contains the evidentiary relationships between disease . .. -
hypotheses and syWptoms directly, without specifying the causal -
pathways between them. From this viewpoint, the functional
representation advanced in this paper can be thought of as a
proposed form of deep model for diagnostic expert systems. It can
yield causal chains of behavioral states at several levels of
detail, and can also generate evidentiary relationships mentioned
above to the extent that they are derivable from causal models.

3. Related to the above notion of a deep model of a domain is the idea
of s lZiag from it different forms of knowledge structures useful
for different kinds of reasoning [1]. For example, for diagnostic
reasoning, we need malfunction hypotheses and pieces of knowledge
that relate symptoms to these hypotheses (the evidentiary knowledge
of the previous paragraph); for reasoning about consequences of
actions that may be performed on a system, we need knowledge that
relates state changes at different levels of system description.
The intuition is that an agent with an appropriate deep model can
generate from it knowledge in these forms, and then use then
directly for the relevant problm solving task. An adequate deep
model can give rise to different compiled structures for different
tasks. If the tasks are senerc in some sense, then one might look
for compilation processes which are device-independent. (A theory
of generic types of knowledge-based problem solving tasks is
developed in (2].) In this perspective, the work to be presented
here proposes an approach for compiling diagnostic problem solving
structures from deep models corresponding to a knowledge of how
devices function. We also outline how another problem solving
structure for predicting consequences of proposed actions can also
be compiled from the se representation, but the major mphasis is
on diagnostic reasoning. In these cases, compilation is meant to
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1 capture the idea that knovledge in a certain more general form is 0
transformed into knowledge of a more particular form, suitable for
particular classes of uses. (Whether a complete diagnostic
structure is compiled initially or portions needed for particular
diagnostic problems are compiled as these problems are encountered
is not of concern in this research i.e, the word "compilation" is
not used to contrast the process with "interpretation" in the
computer science sense of the terms.) While the functional
representation will be more economical in storage, the compiled
structures will be more efficient for the particular problem
solving tasks.

2. Components of a Functional Representation

We envisage that an agent represents the functioning of a device in many

dimensions which include causal temnsaIl and interaction. Tn the causal

dimension a "unit of functioning" (e.&: buzzing of a household buzzer) is

represented as a causally related sequence - a genetic, not a temporal

sequence - of device (or component) states. In the temporal dimension, these
A0

units obey tine constraints. For exemple, two units of functioning should

happen sequentially or overlap or their duration cannot exceed a certain

meount of tine, etc. Tn the dimension of interaction they interact through

feed-back or by commnmicating information. For example, kidneys and lungs

interact with the "acid-base" buffer system by comunicating through changes

in the concentration of bicarbonate and carbonic acid in blood. The

functional representation of a device is an integrated whole of these various

-dimensions.

In this paper we briefly describe the salient features of the caj,,

* zensiouof our functional representational scheme, and how it can be used

for automatically compiling a dan i exe structure by using a

device-indeuendent diagnostic compiler. The compiled diagnostic structure has

an architecture similar to the DX system (3, 8] is., it is a hierarchical

collection of diagnostic (more specifically, classificatory) specialists.
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Our representational scheme is rich in the number of primitives it employs

to represent many aspects of functional knowledge. This richness is necessary

to capture all the uses to which this representation can be put. While we will

attempt to be complete in describing the causal dimension of the scheme in

this paper, only a portion of the scheme vil be utilized by the diagnostic

compiler to be described.

3. A Representational Scheme for the Functioning of Devices

One of the significant tools available to hunans as well as machines to

combat complexity is abstraction. Accordingly, our scheme for functional

representation allows one to represent functional knowledge at many levels of

abstraction. Each level recursively describes the functioning of a device or

component in torms of the abstractions of, and relations between, its -

components. At each level there are five significant aspects to an agent's

functional knowledge:

-MSUCTURE: this specifies relationships between components, and
abstractions of these components from lower levels.

-FUNCTION: this specifies WHAT is the response of a device or a
component to an external or internal stimulus.

-BUAVIOR: this specifies ROW, given a stimulus, the response is
acompl ished. 1+

- GEMIC OVLIDGE: chunks of deeper causal knowledge that have been
compiled from various domains to enable the specification of
behavior; for example, a specialized version of Kirchoff's law from
the domain of electrical circuits.

- ASSUWTIONS: using which the agent chooses a behavioral alternative
over other possible ones.

Next we describe how these five aspects together represent the functioning

of devices at each level of abstraction. Following de Kleor and Brown [5, 61

we shall use the household buzzor (shown in Fig. 1) to illustrate our ideas.
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The functional spcif -ation of a device is illustrated below by describing

one of the functions of the buzzer,namely "buzz".

FUNCTIONS:
buzz: TOM buzzing(buzzer)

I? presed(manual-switch)*
PIOVDID assumptioul,
BY behavi orl

stop-buzz: ....
MID FUNCTI NS

(Attached)

Figre 1: A Schematic Diagram of a
Household Buzzer

descri ption . e"

UIn the above description "buzzing (buzzer)" is a statescrp io.

denotes repetition of a state. The buzzer is represented as having a number of

functions viz., "buzz", "stop-buz", et. The initial state, viz., %t7" and

8t" (refer to figure 1) are electrically connected is specified by -

"assumptionl" (more about assumptions later). The "BY" clauv's relates the

. " function with its behavior i.e., the manner in which the function is

accomplished (behavioral specification is described below). As we shall see in

Sec. 4.2, this association between function and behavior is useful during

compilation. Note that primitives such as TOMXIK (written out in capital

letters in our description) trigger specific subprocesses during compilation

and thus the compiler (described in Sec. 4.2) can be said to "understand" them

(and their syntactic constraints on their arguments). On the other hand names

MNore precisely, they are partial state descriptions of the device as a
whole. We will use the to= "State" for simplicity.

o-S
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such as "behaviorl" axe used for indexing; state descriptions are treated as

strings and used to synthesize pieces of diagnostic knowledge.

The structure of a device (component) is represented using the abstractions

of its components (subcomponents) and relations between then. As an

illustration consider the structure of the buzzer given below. In this

illustration "tl", "t2",etc., are terminals of components. Relations such as

"serially-conected" are not understood by the compiler. "1", "TW", etc.,

are local terminals. The function "magnetic" is defined at the next level as a

function of the clapper in the same way as the functions of the buzer are

described. Its function is to disconnect TI and T2 electrically if space is -.

magnetized.

It is important to note firstly that the functional knowledge of a

component is specified independent of that of a device which comprise the -

component. An abstraction of a component inside the specification of a device

represents the role of the component in the functioning of the device. This

not only concurs with the manner in which we store functional knowledge -

(e.g.,ve know the function of a battery independent of its role in a

car,casmera, etc.) but also has an important practical significanca, namely

storage efficiency. Secondly, what is carried over from one level to another

are not behavioral specifications but names of functions. This is important -

when an agent needs to replace a malfunctioning component by a functionally -

equivalent but a behaviorally different one.

* ,-.°,- °



6

STRUCTURE:
COMPONENTS:

mua-switch (tl,t2), battery (t.e4)
coil e, e6,spacel), clapper (t, tS,spacel)

RELATIONS: serially-connected (manual-switch,
- battery, coil9 clapper)

AND includes(spacel ,spacel)

ABSTRACTIOS-O-C7POmNIN'S:
COMPONENT clapper (tlt, t2, space)

- FUNCTIONS: magnetic,acoustic,sechanical
STATES: elect-coanected (ti, t2),

repeated-hit (clapper)
ASSUMPTIONS: assuaptioul, assainptiou.3

END COMPONNT

COMPONN coil (ti, t2, space)

CD OMPONENT
END AJSTRACTIOIS-O1-cONINTS

ENUD STRUCTURE

mhYRAV1 p

The behavioral specification of a device describes the manner in which an

* agent has composed the functions of the components to obtain the functions of

the device. This specification also has pointers to any generic domain

knowledge and assumptions (relating to behavioral alternatives) -used by the

agent in the process of composition. Fig. 2 illustrates how the "buzz'

function discussed above is realized. We have made use of three conceptually

important notations in behavioral specification. They are described below:

(Attached)

Figure 2: An Illustration of
Behavioral Specification

B f t ame-of-a-behavior>
VI
s2
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For example, step I in figure 2. This is intended to represent that the

state &I (more specifically a state coupisi; see the states in step 1 of

fig.2) causes the state s2 and the details are in another behavioral

specification ( "behavi*r2). This relation enables a behavioral

specification of a device (or a componentho be made at many further levels of

detail, but still within the overall level of the device (or component). We

call this hierarchy the !Iazarzh 2L Detail.Z

2: .1

11I USING FUCTION Caame-of -a-function)
I1 OF0 <component>

For example,
magnetized(spacel)

IIUSING FUNCION magnetic
OF 0 clapper(t7,tS,space2)

I W=T assimption2

oaelect--connected W 7, t8)

The specif ication in "assumption3" is to represent the idea that if space2

is magnetized, the resulting force will be greater than the spring force. The

Above notation means that state s2 is caused f ram .1 by making use of a

function ("magnetic") of the component ( "clapper"). (Recollect the coments

on the "magnetic" function in the specification of STRUCTURE of the buzzer

above.) This makes it possible to glue the functions of the components

together to obtain a behavior. In other words, it enables causal knowledge at

the level of device (component) be represented in terms of causal knowledge at

the level of its components (subcomponents). This hierarchy of causal



knowl edge is called "Cnpna nearchyz.

IAS-PU Awae-of-a-know ledge-chunk>
II IN-T-CNTEXT-07 < a state 0

V description >
2

For example,

elect-connected(t7 ,t)

IIAs-PUR know ledgel nI-TNZ-cOrn=-o1
II voltage-swailable( t3,t4)A

IIserial ly-connact ed(battery, coil,
r I Iclapper,mual-switch)

voltage-applied(t5,atG)

This means that if the terminal# t7 and t8 are electrically connected, then

voltage will be applied between t5 and t6. This is true as pe the knowledge

* chunk called 'knovledgeV' when it is applied in the coatext of battery, coil,

clapper and manual switch being serially connected, and voltage being

available at the battery's terminals. ('knowledgel' is specified below.) .

This primitive enables causal knowledge (i.e., al causes m)to be represented

using more general causal knowledge (i.e., knowledgel) and as described below,

- the latter be represented using still. more generic knowledge (is., Kirchaffra

law). We call this hierarchy the Generalization misrxskz"

The generic knowledge specification of a device (component) describes all

iL chunks of deeper knowledge used in its behavioral specifications. The

following is a specification of 'knowledgel'. There are other types of generic

knowledge requiring notations other than the ones used below.
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MIMIC KOWLEDG:knovledgel: -.-.

voltage-applied (Ti ,T2)

I AS-PL kirchoff's-law
II I-m-corr,- -orI I ect-connected(T:lT,3)

II Aetlect- onnelted(T2,T4) /* TI ...T4 are local symbols.V
voltage-applied 1f3,T4)

END GUULZC ZROWLEDGE

We would like to draw particular attention to the notion of GZNULC

KIOVLEDGZ in our representatcon. It enables us to capture the relation between 8

functional representation and deeper causal knowledge such as irchoff's law.

This link will be useful when the correctness of an application of a generic

knowledge in a functional representation is checked. Moreover, an agent using

the functional representation can justify a step in a behavioral specification

by quoting the generic kmowledge employed.

All assumptions made use of in the behavioral specifications of a device

(component) are described in ASSUMPTIONS as illustrated below with reference 0

to the clapper.

ASSUMPTIONS:

ssmJU tiona : 17 magnetized(space) TJ1 mapetic-force > spring-force -
aj.utiso.: T emagutized(space) TMhE magnetic-force < spring-force

END ASSUMPTIONS

de fleer and Brow [6i state that a difference between a novice and an expert

is that the latter has made explicit all the assumptions underlying behavior

of devices. Our functional representation has constructs to represent
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assumptions and their role in behavioral specification. It is perhaps worth -

restating here that though the compiler does not understand '"agnetic-force",

etc., it can use these strings to compose pieces of diagnostic knowledge.

0

4. Compilation of a Diagnostic Problem Solving System

Now we can proceed to a discussion of how a diagnostic problem solving

system can be generated from the functional representation by using a device- .0

independent compiler. As a prerequisite for this compilation, the compiler

needs to check the correctness/consistency of those portions of the functional

representation that it will use. An example of incorrect specification is: A ".6

behavioral specification may specify that el causes s2 as per some knovledge

chunk in some context. But when the knowledge chunk is applied in the context,

ls./ may not cause s2. ge have not yet investigated this for of reasoning. The

compiler described here assumes that the representation is correct/consistent

in those aspects that it uses.

4.1. The Structure of a Generated Diagnostic System

As shown in Fig. 3, the generated expert system is a hierarchy of

specialists. The structure and problem solving of the diagnostic system are

similar to those of a medical diagnostic system called MDX [3, 81. Each

specialist corresponds to a malfunction in the device at a certain level of

abstraction, e.g., a bad clapper, bad serial connection, etc. Specialists

corresponding to more general or abstract nalfunctioning are higher in the

hierarchy. For ezample, node 2 corresponds to the following malfunction: the

buzzer does not buzz when the manual-switch is pressed. One of its sub-

specialists (node 7) corresponds to acoustically bad clapper. Every S

specialist has knowledge to establish the associated malfunctioning. As shown

in FIs. 3, the knowledge is in the form of two types of rules: confirmatory
0O
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and exclusionary rules. A malfunction is diagnosed top-down by establishing a

specialist and refining the malfunction represented by it by calling its sub-

specialists (see [8J).

(Attached)

Figure 3: An Example of a Generated
Diagnostic Expert

We have identified three types of malfunctioning,nauely a violated

assumption, faulty function or faulty relation. The corresponding specialists

can be viewed as "assumption checker", "function checker' and "relation

checker.

4.2. The Compilation Process -

The compiler first generates the root specialist which corresponds to a

"malfunctioning buzzer." The root specialist contains no rules. Invocation of

the diagnostic expert will automatically establish the root specialist. The

compiler then generates a function checker for each function of the device

(since the malfunctioning must be due to one or more of the faulty functions).

For example, given the "buzz" function in Sec. 3, the compiler will generate a

function checker with the following rule:

I pressed(maual-svitch)* Avbuzzing(buzzer)
TKIN couf im
ELSE reject

(How the compiler operates on the PROVTDED clause is discussed later.) The

function checkers generated as above will be attached to the root specialist.

9 Afterwards the compiler, using the "BY" clause in the functional

specification, obtains the behavior associated with each function and compiles

it. For example, if the behavior is specified in the form (we do not discuss

.]
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here multiple causes and multiple effects):
S

the compiler vill generate a set of u-1 function checkers. (This is because

if the function is faulty, then one of the steps in the corresponding behavior

may be malfunctiouing.) The rules for the ith specialist will be: "IF Si-IA

VSi c confirm ELSE reject". For the "buzz" function example given above, 0

"behaviorl"(given in figure 2) vill be used to generate nodes 5,6 and 7 (in

figure 3). Another possible reason for a function not working is that the

condition in the PROVIDED clause may not be holding. Therefore, the compiler

will generate an assumption checker using the PROVIDED clause, if any. For

example, node 4 corresponds to the PROVIDED clause in the "buzz" function.

Also, note that the condition in the rule associated with node 5 does not p

include "pressed (mmual-switch)*" since It is checked at the parent node.

Further processing of a behavioral specification depends on the kind of

composition of behavior. The following cases arise:

1. Step 1 in figure 2 will also result in compiling 'behavior2'
(Vbehavior2 is not specified in this paper) as described above,
and attaching the generated specialists to node 5.

2. step 2 in figure 2 will result in obtaining the behavior associated
with the function "mechanical" from the functional representation
of clapper and compiling it. If there is no behavioral
specification for the function, the specialist will be a tip
specialist (e.g. node 6). Also, If a function is used in a 3
behavioral specification under an assumption (as illustrated in
section 2). say "assumptioul" and the specification of
"assumptionL" is of the form " 11 s3 TM13 s4" then the additional
specialist with the rule "IF s3 A -.4 MUM confirm ELSE reject
will be generated (since the function may be faulty due to a
violated assumption).
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3. The piece of causal knovledge

al
AS-PER knowledgel

l IN-TR-cONTm-o s3A s.4A.su

s2

will result in n-3 sub-specialists with the rule for the ith (3 < i
< a) specialist being "17 J Si TSEN confirm ELSE reject". This is
because the reason why the above step does not hold is that the
context of the application of 'knowledgel' is different ( Note that
the compiler assues the representation to be correct/consistant).
The ith specialist will turn out to be a relation checker if si
corresponds to a relation.

We have implemented the compiler described above in ELISP on a DECaystem

20/60. The compiler is being tested extensively in the medical and

electromechanical domains.

4.3. Meaning of Function in the Representation

In what sense can the representation proposed be said to correspond to

"understanding" how the device works? We can point immediately to several _

aspects of understanding that is not meant to be incorporated in the

representation: e.g., it does not understand "buszing" or "electrically

connected" or any of the terminals that are treated as strings of symbols, nor .

to speak of any comon sense substratum of knowledge such as objects and

actions. What the functional representation really does in to or"Rze the

agent's understanding of how the device's functious result from behaviors made

possible by the stcture of the device, and contains explicit pointers to

uaneui& d ai dge and a¢stiotmons about beh o alternatives used by

the agent in this process. Thus this representation is a piece in the total

understanding structure, and is responsible for elucidating the role of the

structure in the functioning of the device.

9"

" i
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There is a need to distinguish between the "intrinsic" function of a device 0

and the variety of functions it may be put to as part of a larger systea.

2Consider the ezmple of a stem valve which opens and lets stem escape when

the stem pressure goes over a certain limit. One designer may use this to S

make a high-pressure alarm by attaching it to a whistle, and another may use

it as an "ezplosion-preventer" in a stem engine. But the typical functional

representation of the steam-valve vil not have either of these functions •

represented in it, since representing them will go beyond the intrinsic

function of the device itself. What is an intrinsic function of a device is

related to the "no-function-in-structure" (NFIS) principle that is suggested

by [51 [101 as a way of ensuring that the agent's representation of a

component is specified independently of the contexts in which the components

may be used. Thus, this principle will forbid representing the battery's

function in the buzzer as something that will help it to buzz, or that it is

to be connected in series with a clapper in a buzzer, etc.

5. The Diagnostic Task and the Structure Produced by the Compiler

It is important to note that diagnostic reasoning in general needs

strategies and knowledge that go beyond what is obtainable from considerations

of functioning of the device alone. The final form of the diagnostic problem

solver will reflect an integration of the diagnostic structure obtained from

the functional representation and these additional strategies and knowledge.

Some of this additional sources of complexity in diagnostic reasoning are

given in the following.

1. Not all diagnostic knowledge about a system is derived from a

:eto Ben Knipers, personal commication. kf ".Io KL~ . ke~vw frny4iltj

k. KOO A,...h'-,I . nr,- i. 'M 1."A*" ' -g -f D- ' Ao /P,#Atq ,) RY < "
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fuctional understanding of the syntem in question. This is .
especially true of complez systems such as the hun body, where a 0
sizable portion of the diagnostic knowledge of physicians comes
f r epirical and statistical means, rather than by a device-based
understanding of the body. Our approach can account for those
portions of the diagnostic knowledge base that are derivable from a
deeper functional model.

2. The diagnostic system in Fig. 3 has diagnostic rules which use
results of some tests as evidence for or against malfunction
hypo theses, Often, however, these tests cannot be performed, or
their results cannot be observed. 1EoS, one of the functions of
lver is to secrate bile into the duodenm, and our functional
compiler will produce, "Check if there bile is secreted in the i
duodeum" as a test to be performed for a liver malfunction. "Bile
in the duodenum" is not directly observable, and thus additional
information-gathering processes will ueed to be launched to infer
this datum. There are several strategies typically available for
this. One of than is to regard the presence or absence of bile as - -
state changes in another functional system that characterizes the 0
action of bile in the body, derive the consequences (e.g, bile not
secreted into the duodenun -> high bilirubin in blood), and use
the latter data as evidence about the unobservable test values, and
thus about the hypothesis. Sometmes, such an iterated reasoning
process will only be able to give probabilistic evidence. E.g., -
the test "Check if <orgon> is enlarged" may not be directly - P
observable, but pain in that region "ay result from the enlarged
organ. But other organs in that region, if enlarged, may also
result in pain. Thus "pain in <region)" may give a probabilistic
evidence for the hypothesis for which "Check if <orga> is
enLargedw was to be a test.

3. Another strategy useful vhen the functional copiler produces
nonobservable tests can be illustrated by the following example.
Asse that a certain input, say al, to a device will produce
action a if the device is in mode al, and action a2 if it is in
mode =2. Consider the function corresponding to action al, and let
us asame that the behavioral sequence that results in al can be -

simply diagrained as follows:

If device in al
ml sl" >al by device

at input at point p i

I If devicr in =2
a2 by device

The fragment of the diagnostic hierarchy with the attached rules 5
will be as follows:

" "
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I I ' ' : '

If si at input If $l at p, and device at mode ml,
an4 not sa] at p, and not aI at output,
conf irm, else reject confizm, else reject

Let us now assme that sl' at p is not observable, but al is at the
input and the device is not outputting aI as action. Now a typical
strategy in diagnostic :eaoning is to ask what other functions al5
at participates in, ( ,n this case it will be e2 at output if device
is in mode m2), and use it for ruling out. E.g., in this
situation, the strategy will call for trying to got the device in
mode =2, send ul at input, and se if action a2 takes place.

The point about this strategy and the one in 1. above is that they
are external to the functional representation and the compilation
process. The diagnostic structure produces by the compiler has
extracted the diagnostic knowledge directly derivable from
functional knowledge, and other strategies need to be called upon
to transform it further.

4. Another transformation of the diagnostic structure is quite cin
but also beyond the responsibility of the functional representation
and the disanostic compiler. This transformation involves
incorporating knowledge about costs of malfunctions end their
relative probabilities into the diagnostic process so that certain

*malfunctions may be considered before others. E.g. * in mnyw
electronic appliances, the f irst thing to check when it
nalfunctions is the battery, siace it is the most common source of
failure. Similarly some malfunctions m y be more costly, or tests
for them may be mort economical, so they msy be investigated before
others. This form of knowledge, and its incorporation vitm the
diagnostic structure, is not related to how the device'sa function
&rises from its structure, and thus requires processes outside of
the compiler described earlier.

5 5. recause of the simplicity of the device, all the nodes u Fig. 3
c could be established or rejected on the basis of one test.
Typically, however, the knowledge needed for confizmation or
rejection of a malfunction hypothesis in complex systems would
consist of a nIuber of pieces, each contributing som evidence for
or against the hypothesis, and these pieces of evidence may need to
be combined in a complex way. This complexity in the knowledge

* needed for confirzation or rejection of a malfunction hypothesis
£ arises from a number of sources mentioned earlier: the fact that

some of the knowledge is empirical and needs to be integrated; and
• "the introduction of probabilistic aspects due to the need to

convert the tests to observables.

6. Another exzmple where additional knowledge and reasoning beyond the

. . . .i **_- ".
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functioning of the device is called for in reaching interesting
diagnostic conclusions can be illustrated by the following example.
Assme that the manual switch in the buzzer example has been so
altered that the circuit is closed when the switch is open, and

* vice versa. Now both the "buzz" and the "stop buzz" functions are
not being fulfilled by the device. The diagnostic structure will be
able to recognize this, and viii make two sets of diagnoses: "buzz"
function blocked because the switch is not on when pressed, and the
"stop buzz" malfunction happens because the witch does not go off
when not pressed. To go from these correct conclusions to
hypothesize that possibly the same structure change is causing both
the malfunctions involves a form of reasoning which is distinct
from the task of the diagnostic compiler.

7. In our approach, we define the diagnostic task as one of finding
the structure change that is responsible for an observed failure of
a function of a device. This is the diagnostic task that is
handles by the compiled problem solver such as the one in Fig. 3. - -
Note that this explicitly does not include having to account for
how the observed (malfunction) behavior is generated from the
changed structure. luman problem solvers sometimes do the latter
as part of their diagnostic reasoning, souer4-,s they don't. The
latter process aay generally require a - of a
iElalio, called eisionifl& [71, in order to reason from -
structure to behavior. Tn this paper we do not address the problem
of envisioning, which is also related to how an agent may construct
a functional representation from the structure and functions of
components. Some of the references that propose some theories of
how this may be done are proposed in (11, 71. In Sec. 7.1, we
discuss this and related issues further.

8. A malfunction may be caused by introduction of alternate causal
pathways, without any particular component being faulted. In the
buzzer example, imagiie that somae form of leakage or short circuit
exists between terminals t5 and t6, thus depriving the coil of any
current. There is nothing in* the functional description that
specifically states that such a short circuit should not be present
for the device to work, nor would it be reasonable to expect it to
say so, since such a statement will used to be made about every
component. This is general electrical knowledge that is implicit
in an agent's understanding of how a whole class of such devices
work. During diagnosis, hypothesizing such short circuit for every
component would be prohibitive. The diagnostic system in Fig. 3
would identify the problem as one of transiting from "elect-
connected(tl,t2)" to "voltage-applied(tO,t6)" in behavior3 (see
appendix). Under normal conditions this can be interpreted as
failure of the coil (say an open-circuit in it) indicating that it
should be replaced. However, when that fails to solve the problem,
other (typically pro-compiled) causes of no voltage across the coil

3 Zxample due to Wendy Lehnrt, personal communication.
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0. terminals can be tested, and one would assume that such a list will

include short circuits around the component. Note that, while this
portion of the diagnostic reasoning is itself not driven by any
functional knowledge about the device, the problem solver in Fig. 3
derived from functional knowledge has nevertheless strongly focused
the problem. Without this focusing, the nuber of alternate
patiway hypotheses that will need to be considered will be
prohibitively large.

- 6. "What Will hppen If" Problem Solving Using the Junctional Representation

It is natural to expect an agent who understands how a device works to be

able to say what consequences to functionality a change in the structure of

the device will produce. Again, similar to our coment in item 7, Sec. 5.,

this task has two components: one is to know which of the intended functions

will be affected by a proposed structure change, and the other is to deduce

what new behavior will follow. E.g., given an understanding of how

mplif ication is produced in an electronic amplifier, and given a change in

* the value of some resistors, an agent may be able to say, "the device will

fail to amplify," while another agent may be able to augment this with,

I.
"instead, the device will oscillate." Our functional representation ca.

support the former component (as we will show shortly). The latter, as in the

case withL the diagnostic task, will in general require construction of a new

functiona. representation.4

We can view this IWM problem solving as being performed by a problem

solving structure that in compiled from the functional representation, similar

4 lowever, when alternative functions (such as oscillation) are the
consequence of certain j j a in the functional representation being
violated (such as the value of certain resistors being greater than a certain
mount), it is possible to construct an augmented representation that
essentially encodes the functions that would result from alternative

- assumptions. In such a case both parts of the WII task can be answered from
" "the augmented functional representation. This augmented representation bears

the same relation to our functional representation that the "intrinsic
mechanism" of [61 does to their causal state sequences.

. _ .' : -_ -_ ., ' . . . - " _ .. • .. . . . . . .. .- . . . . . . . . . " . . . - _ - .. .. _
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to the diagnostic problem solving described earlier. While we have not

implemented this compiler, we can outline this process in a fairly

straightfozward manner. Let us motivate the discussion with the following

concrete questions about the buzzer that we might wish such a structure to

answer. (These questions are slightly modified versions of those given in

(51 .)

1. What happens if we reverse the leads of the battery?

2. What happens if we switch the leads of the coil?

3. What happens if we remove the battery from the circuit?

4. What happens if we make the clapper spring tension lighter?

The general procedure is that given a proposed change in the strctmure, the

compiler looks to see in which behaviors the component affected by the

structure change participates. Referring to the appendix, which gives

complete description for the BUZZ function, we see that the battery

participates in behavior and behavior3. For question I above, then, the

relevant issue with respect to behavior - and behavior3 is whether "FUNCTION

voltage OF battery" is still delivered, and relation "serially-

connected(battery, coil, clapper, manual-switch)" is still valid. The

functional representation itself cannot answer these questions, but points to

which questions need to be answered by further domain knowledge. We know from

domain knowledge that for question I the answer is that neither the function

nor the relation is affected, thus the two behaviors are not affected, and the

"buzz" function is not affected. For question 3, a similar analysis will

result in the following sequence of reasoning steps. Tn behavior3, the

• • -: ii~ii ; ; i i
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transition from "elect-connected (.i, t2)" to "voltage-applied (t5,:6)" will

fail, which will cause behavior3, viz., the transition from "pressed(manual-

witch)" to "elect-counected(7,8)" to fail. This will result in behavior2

I failing, which will in turn result in behaviorl failing in the first

transition, i.e, continuous pressing of manual switch will not result in the

alternate connection and disconnection of t7 and t8. As a result, function

"buzz" will fail, since behaviorl is used to realize this function.

Answering question 2 is quite similar. Question 4, however, is worth

considering in some detail. The compiler will note that this part of the

structure (i.e., spring tension) plays a role in assumptiou2 and assuption3

(see Assumptions subsection in See. 3. Again further donain knowledge is used

to conclude that spring tension, if sufficiently weak, will. violate

assumption3. The clapper's functional representation describes its magnetic

function as consisting of:

FUNCTION: magnetic: TOMAUE elect-connected(t7,t8)
17 magnetized (space2)
PROVIDED assumption2

TONIZE -elaect-conn(t7 ,t8)
Il ', magnetized (space2)
PROVIDED assumption3 0

Possible failure of assunption3 will imperil the second part of the above

uagnetic function, which will endanger the

^.magnetized(space2) -> elect-connected(t7, t8)

transition in behavior4 in "buzz" function (see appendix), thus putting the

"buzz" function into question. Thus the final conclusion is that, for
0

sufficiently weak tension (or sufficiently light am) the "buzz" function will

not be delivered by the device.

o -A. -a . . • -. - - -
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In the above description, we have used the word compilation, but in fact

actually described the problem solving. More precisely, we should show that

the compiler actually builds a probleu-solving structure (like the diagnostic

structure in Fig. 3) which 'then solves the VWNI problem. However, for

purposes of this discussion, our sin was only to show how the functional

representation can support this type of problem solving.

Note that the WWI problem solving described above moves through behavioral

levels of abstraction made possible by the hierarchical structure in the

functional representation. This is consistent with the nature of infozation

processing for this generic task as described in [2].

7. Relation to Other Work

Our research differs from those of de Ileer and Brown [5, 61, Patil [131,

and Davis L] in the following three significant respects:

1. Our representation identifies and relates the five aspects of
functional knowledge, namely "function", "behavior", "structure",
"assunpt ous" and "generic knowledge" in a specific scheme.

2. We have refined the notion of causation in teams of three
hierarchiesnamely "Hierarchy of Details", "Component Hierarchy"
and "General zation Hierarchy", and used it to represent the
functional knowledge of devices.

3. We have been directly concerned with compilation of expect problem

solving structures from the functional representation.

uipers [111 discusses a form of envisioument about changes to an equilibrium

condition in a physiological system, and proposes this as a kind of

understanding of the human body that may be incorporated in medical expert

systems. The issues discussed by him are orthogonal to our concerns here. In

L10] he critiques the representation proposals of de Ileer and Brown. Our

discussion in Sec. 7.1 subsumes his critique.

-.........
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7.1. The Work of do user and Brown

We were originally motivated in our work by our concern with deep models

for problem solvers, and thus we were searching for "mental models" of devices

that would permit compilation of problm solving. Once we formulated our

theory, we noted that the work of de Ileer and Brown, which proposed using

envisioning to produce such a mental model, had some elements in common, but

the representation was significantly different. The desire to understand the

points of contact and departure between our points of view was in fact one of

the reasons we chose the s m device they had used, viz., the buzzer. Tn this

section we compare the representation and the umderlying points of view.

De Mieer and Brow's proposal for the "mental model" for the un'%rscanding

of devices consists of representing qualitatively the causal sequence of

behavioral states that the device needs to pass through during its

functioning. In the buzzer eaumple, a portion of this mental model can be

stated as follows: "The clapper being open results in no current through it.

which results in no current into the coil, which results in no magnetic field,

which results in clapper being closed, which results in current flowing

through its input and output, which results in current into the coil, which

results in a magnetic field, which results in the clapper being open." The

alternative representation proposed in (101, while different in a number of

details, is also essentially a sequence of behavioral states. In our

approach, however, the function is distinguished from the behavior of the

device to accomplish it. Our functional representation is a hierarchical

organization of behavioral segments of components into a representation which

itself is not a causal sequence of partial states, but can be processed to

obtain such a sequence. Further, unlike the causal sequence of (6], the
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sequence that can be produced by our representation can be in varying levels

of detail, because its hierarchical structure reflects the component hierarchy

in the device. The hierarchical nature of the functional description is very

important; otherwise describing the functioning of a complez system vwil

involve an excruciatingly long sequence of causal states at a low level of

abstraction. Simply out, we distinguish the description by an agent of the

causal/behavioral sequence that a device undergoes, frou the representation

used by the agent to produce such a description, and identify the latter with

the functional representation or the mental model of the agent.

Another advantage of distinguishing between function and behavior in the

manner we do is that we are able to represent functions which vrffM certain

things from happening. (See footnote on "ezplosion-preventer" in Sec. 4.3.)

This would be difficult to do if function is represented as the actual causal

sequence followed by the device: prevented situations vill hardly occur unless

the device were malfunctioning

Kistorically, de Vleer and Brown have been concerned with the issue of how

an agent composes the behavior of the components of a device to obtain the . S

behavior of the device itself. This process they have called en ,sw. niin '.

hile this is an important part of the comprehension process, we feel that

understanding the functioning of the device consists of a further activity of - 0

constructing a functional representation along the lines advanced in this

paper. Now an agent constructs such a functional representation by combining

envisioning, functional representation of components of the device, some - S

global properties of the device, and assumptions about the device itself is an

open question.
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We have said several times that a test of a functional representation is

* its ability to support different types of problem solving such as trouble-

shooting. While, to our knowledge, de hoeer and Brown have not reported on

any implementation of a diagnostic reasoning system based on their causal

sequences as mental models, they have described how such a process may work

(6], and it is instructive to compare that process with our approach.

They regard diagnostic reasoning as a task of accounting for how an

observed behavior, which differs from an intended behavior, is actually

produced by a malfunctioning device. They indicate that if the malfunctioning

device essentially follows the sae causal sequence (with some of the

attributes of the states or assumptions possibly being different) as the one

* corresponding to the functioning device, then the structure causi.ng the

difference in behavior can be identified relatively easily. (For large

*systems, this night still require following an equally large state causation

chsin.) If the structure change is such that the device is not undergoing

*essentially the sme causal chain, this task calls for a new envisioning for7

each structure change hypothesis. The causation chain itself is not useful

for generating structure change hypotheses efficiently, or for the aew

envisioning that would be needed for each candidate structure change

hypothesis. They correctly point out that the diagnostic process would now

: ~ face a prohibitively combinatorial search.

* The diiaguostic task, as mentioned in item 7, Sec.* 5, can be decomposed into

two components: i. identifying the part of the structure that is responsible

for the original f unction (f or which the agent has a functional

* representation) not being delivered, and ii. explaining, if possible, how the

changed structure produced the observed malfunctioning behavior. To use an
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example well-known in electronics, amplifiers may sometimes malfunction, and

behave as oscillators. The f irst part will correspond to saying,

"m plification is not taking place because resistor Rl's value is less than

required,*e ad the second part will explain how the change in the value of the

resistor resulted in the device acting as an oscillator. Note that if one can

do the former vithout being able to do the latter, one would still have

accomplished a significant diagnostic act. It is not clear that most trouble-

shooting situations necessarily require the latter part in any case, since the

goal of the troubl e- shooting process if often identifying the components to

replace that are causing the malfuction.

The first pact is not subject to a combinatorial search problem in our

theory: the functional representation and the compiler in principle can

identify the component at f ault5 
s-- _______

- ------**--- ....--.-.. . - - - >because of the

hierarchical structure of the resulting diagnostic structure as vell a

because the representation encodes the relation between structure and the

intended function. The second part, viz., explaining how the new behavior is

produced, may or may not be subject to combinatorial search, depending upon-

the degree of change to the structure and the resulting need for new a

functional representation.

5 See itsm 8, Sec. 5 for some qualifications to this statement, but the
argument hare is not affected.
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8. Concluding Rmarks

* As we have indicated the task of accounting for how complex systems and

devices are under stood has many components. We have developed a framework in

which this comprehension process and its relation to problem solving can be

investigated. In particular, we have proposed a language for the

representation of what we call the causal component of this comprehension that

captures some aspects of how a function of a device arises from its structure,

and shown that this structure can support problem solving for diagnosis and

some kinds of prediction.

Directions for future research include the following: First, we need to

develop methods to check the correctness/ consistsncy of a given functional

~ Irepresentation. This requires domain knowledge for interpreting state

descriptions as well as the relations such as "serial ly-connected. " Second,

we need to investigate the design of the other two dimensions of out

- representational scheme, namely temporal and interaction. Also, the causal

dimesion has to be integrated with the other two in a disciplined,

practically useful and cognitively meaningful framework. Third, we need to

identify the compilation processes that come into play to generate other types

of expert problem solving structures, such as predicting functional and

behavioral consequences of changes in structure or assumptions. Finally, it

* is a matter of significant theoretical and practical interest to ask how an

agent can incrementally acquire a functional representation of a device from

its structure, generic knowledge, inadequacy of the current representation f or

*supporting the compilation of adequate problem solving systems, etc.

In broader terms, this research is part of our on-going effort to uncover

the multiplicity of generic structures and processes involved in knowledge-
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based problem solving. 'Whether or not one accepts the hypothesis of

homogeneous and unitary architectures such as production systems as adequate - - -.

at the level of symbo-pro ces sing in the mind, we feel we need a richer

collection of generic Imowledge structures and a correspondingly rich

collection of knovledge-processing mechanisms that operate on them, in order

to account for knowledge-based problem-solving activity at the information-

processing level. In expert systems work especially we feel there is a need 0

to explore richer architectures that capture the information-processing

activity. From this perspective, the functional representation is one of the

information-processing level theories that are needed for understanding .

knowledge-based reasoning.

S

• I

0
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r APPENDIX

To the paper
"A REPRESENTATION FOR THE FUNCTIONING OF DEVICES

THAT SUPPORTS COMPILATION OF EXPET PROBLEM SOLVING STRUCTURES"

by V.S. M~oorthy and B. Chandrasekraran

Details of the functional representation of FUNCTION: buzz of the buzzer

NOTE; W. have represented below only the buzzer;
- Battery, coil, clapper and manual switch have NOT been represented.*

DEVICE buzzer

buzz: TON=R buzzing (buzzer)
17 pressed (manual-switch) a
PROMID INITIAL elect-connected (t7 ,tS)
37 behaviori

stop-buzz :TONM -buzvzg (buzzer)
IF 'pressed (manual-switch)
PROVIDED ]ZTIALr buzzing (buzzer)
BY behaviorS

STEUCTUR:

manual-switch (tl,tZ), battery (t,t4,
coil (t,t6,spacel), clapper (t7,t8,space2)

W.LAflOIS:
serially-connected (manu al-switch battery,coil,clapper),
includes (specel ,spacel)

&BS'mLCTIONS-O1-COMPONINTS.
COUPOWWT clapper (Tl,T,SPACZ)

FUNCTIONS: uecanical,acoustic ,uagnatic 0.
STAIRS: elect-comneted (TIM1),

repeated-hit (clapper)
COEFONUT coil (T1,T2,SPACS)

-' FUNCTIONS: magne tic
STATZS: magnetized (SPACI), voltage-applied(Tl,T2)

COMPONNT manual-switch(Tl ,T2)
JUNCTIONS: connect
STATRS: elect-connected. (Tl,TI),

pressed (manual-switch)

COUPOOKT battery (Tl,T2)
FUNCTIONS: voltage



3UhVIOR:

pressed (Manual-switch)*

BY N behaviorl

{elect-connected (t7,tS); elect-connected (t7,tS))

V SMG JUCTION aechanical OF
II clappe(t7,tSapacel)

repeated-biit (clapper)

it us USG UCTION acoustic or
11 clapper (t,tS,spacel)

buzzing cleapper)

Wuaxing (bazze?)-

bshavio:

{ pressed (manual-switch)

BY Sbehavior3

-elect-conected (t7, tS)

IIAS-PLU knowiedgel M-uz-corrm-of
II erially-conuected (battexy~coi2.,-

I I JUCTION voltage Of battery-

'voltage-applied (t5, tf)

BY I behavior4

elect-connected (t7,tS)}*



pressed (manual-.vitch)

IIUSNXG MUCTIOI connct OF
I umanual..witch (ti, t2)

elect-comncted (tiU)

IAS-PZU knovledgei nf-U-C0E-O1
I UNCTIO voltage .1 battery
IIsedially-counected (battery, coil,
I I .ciappe,aml2 -swltch)

voltage-applied (t5st6)

IINT behwvior4

elect-connected (t7 ,tS)

bebavioz4: XUT

voltage-applied (t5,t6)

UI I u mc NC=O magnetic 0F
II coil (t3,t6,spacel)

magnetized (spacel)

IIAS-PSI know 1.dg*2 '=-U-CON=-O7
II includes (upacel'spacel)

uagnetized (spacel) ft

IIUSMIG JUCTION magnetic Or
II clapper (t7,tgspace2)

elect-counected (t7, c8)

Note: 177 (Si- S2 >83) ithe @me as
Si 32 SI- 3 and -S1 -> 'M->~
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GMUU.C DMOULMDI:
kmle~ldgel:

Voltag-applied (tl,t2)

IIAS-PU kirchof f s-lm

II elect-covnected (tl,t3).
II lect-connectod (ti, t4)

voltage-applied (t3,t4)

kuowledg*Z:

sagmetized (speca1)

IiAS-PU Lav-of-space -

II includes (spacelapacal)

massetized (spacel)

EiD-DEVICE buzze?



Fig. 1
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Fig. 2

I

- I

3B1AVT03 behaviorl-

Pressed (usnual-switch)*

\L BY bsbav-or2 Step 1

(elect-counected (t 7 , t 8 ); elect-comected (t 7 , 8 )}* 

USIN FUNCTION Chania Soep 2
or clapper (t 7 , t8 space2)so 

-

Repeated-hit (clapper)

USING FUNCTION Acoustic Step 3
OF clapper (t 7 , ta8 space 2)

Buzzing (clapper)III Step 4

Buzzing (buzzer)

Notes:
1. "1'=-" equivalences two states
2. a;S2 means s2 follows s.

1
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APPENDIX B

EXPERT SYSTEMS FOR A CLASS OF

MECHANICAL DESIGN ACTIVITY



To appear in Proc. of IFIP WG5.2 Workina Conference on Knowledge

Engineering in Computer Aided Design, Budapest, Hungar:, Sept. 84.

EERT SYSTEMS FOR A CLASS OF

MECHANICAL DESIGN ACTIVITY

U D. C. Brown, B. Chandrasekaran

Artificial Intelligence Group
Department of Computer & Information Science

The Ohio State University
Columbus, Ohio 43210, U.S.A.

We are investigating the structure and operation of expert
systems for the design of mechanical components. Our
approach, referred to as Design Refinement, applies to a
particular class of design activity. A hierarchical
structure of conceptual specialists solves the design
problem in a distributed manner, top-down, choosing from
sets of plans and refining the design at each level of the
hierarchy.

1. Introduction

1.1. Our Research

The research reported here is concerned with the design of mechanical components

by computer. We are investigating the structure and operation of expert systems

U for this task. As design in general is a very poorly understood activity we have

chosen to limit ourselves to a particular class of design activity, understand it

thoroughly, and build expert systems that will simulate that activity in a

realistic way. Our initial discussion of this problem and presentation of a

simple prototype system has been presented elsewhere.

1.2. Other Work in Design

While there has been some AI-related work in constructing aids to design2 , in

particular in the electronics domain3' ', 5 the key issues of the structure of

knowledge and control in design problem-solving have been given less attention

6, 7, 8, 9, 10, 11, 12, 13. One promising short term approach is that of

extending the existing CAD concentration on design support systems to include Al.

Some research has been done by our group and others on intelligent graphical

aids, and in knowledgeable data-bases14 ' 15,

1.3. Problem-solving Types

* Most first-generation expert systems have been rule-based with a separate

* inference engine. The rule-based approach has proven to be both practical and

profitable, and resulted in a number of expert systems. However, for handling



more complex forms of expert problem solving, there is a need for knowledge

representation approaches with a richer set of constructs. These constructs

should be helpful in capturing other more structured forms of knowledge and

should be such that they help organize both knowledge and problem solving

behavior for more focussed problem-solving.

We have been developing an approach to problem-solving that views a complex body

of knowledge as being decomposed into a structure of Specialists engaged in S

collective, cooperative action. Each specialist does the same kind of problem-

solving but contains different domain expertise. The organization of the

specialists depends on the problem-solving type and will reflect the conceptual

organization imposed on the domain by a human problem-solver. A Problem-solver

therefore consists of a well organized collection of specialists each doing the

same type of activity, while an Expert system consists of a well organized

collection of one or more interacting problem-solvers.

We have identified several distinct types of problem-solving 6 
- such as j.

diagnosis, which reasons about how to classify a complex description of reality
17as a node in a diagnostic hierarchy , consequence finding which reasons about

the consequences of contemplated actions on complex systems, and design which

reasons about providing values for the attributes of some entity which has .0

constraints placed on it. Clearly these are not the only types. Once these

types are well understood, we will be in the situation to be able to categorize

which kinds of expert problem-solving we know how to mechanize, someth3.ng with

which current approaches offer little help.

2. Three Classes of Design

2.1. Design in General 0

In general, design is a highly creative activity involving diverse problem-

solving techniques and many kinds of knowledge. We know very little about what %

creativity is, although there has been some work on discovery processes and

heuristics18 , 19. Often the goals for a design are poorly specified, and these -

goals may be altered during the design by feedback from successes or failures.

Clearly, as we don't know many of the components of design in general, and as we

poorly understand those components we do know about (for example, planning20) a

general approach to design is currently out of reach. -* -

However, opinions in the literature agree about many components of design

activity. There is an element of refinement. That is, descriptions get refined :-. -.

into less abstract forms. Plans are used in recognizable situations where

~~ -- • • .i -- - -! i_ i _.= i - ,--- °-- -ii 
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experience has produced a sequence of design decisions that will usually work.

Such plans are the result of past planning and validation by repeated use.

Design activity often has a rough design phase followed by design proper. Design

activity is organized in ways that reflect the structure or functionality of the

entity being designed. Similarly the representation of the design is also

structured. For example, blueprints will have detailed drawings and general

drawings. A single blueprint will have areas reserved for different sub-

-components or functionally related entities. During the design various

restrictions on what is allowable for this kind of entity will be checked at

appropriate points, and the initial conditions Cie. requirements) form a starting

set of restrictions imposed on the design from outside.

After discussions with practitioners, keeping the above opinions in mind, we have 1

roughly classified design activity into three classes - although it is clear

that there are subclassifications that make the classes overlap in some ways.

They vary from completely open-ended activity (design in general) to the most

mundane.

2.2. Class 1 Design

The average designer in industry will rarely if ever do class 1 design, as we
I K consider this to lead to a major inventions or completely new products. It will

often lead to the formation of a new company, division, or major marketing

* effort. This then is extremely innovative behavior, and we suspect that very

little design activity is in this class. For this class neither the knowledge

U sources nor the problem-solving strategies are known in advance.

2.3. Class 2 Design

jThis is closer to routine, but will involve substantial innovation. This will

require different types of problem-solvers in cooperation and will certainly

include some planning. Class 2 design may arise during routine design when a new

requirement is introduced that takes the design away from routine, requiring the

use of new components and techniques. What makes this class 2 and not class 1 is

* that the knowledge sources can be identified in advance, but the problem-solving

strategies, however, cannot.

* 2.4. Class 3 Design

Here a design proceeds by selecting among previously known sets of well-

understood design alternatives. At each point in the design the choices may be

simple, but overall the task is still too complex for it to be done merely by



looking it up in a data-base of designs, as there are just too many possible

combinations of initial requirements. The choices at each point may be simple,

but that does not imply that the design process itself is simple, or that the

Icomponents so designed must be simple. We feel that a significant portion of

design activity falls into this class.

2.4.1. A Class 3 Product

I In a large number of industries products are tailored to the installation site

while retaining the same structure and general properties. For example, an Air-

cylinder intended for accurate and reliable backward and forward movement of some

component will need to be redesigned for every new customer in order to take into

account the particular space into which it must fit or the intended operating

temperatures and pressures. This is a design task, but a relatively unrewarding

one, as the designer already knows at each stage of the design what the options

are and in which order to select them. Thus there is strong economic

S justification in attacking this problem.

2.4.2. Class 3 Complexity

The complexity of the class 3 design task is due not only to the variety of

combinations of requirements, but also to the numerous components and sub-

components, each of which must be specified to satisfy the initial requirements,

their immediate consequences, the consequences of other design decisions, and the

constraints of various kinds that a component of this kind will have.

iWhile class 3 design can be complex overall, at each stage the design

*alternatives are not as open-ended as they might be for class 2 or 1, thus

requiring no planning during the design. In addition, all of the design goals

and requirements are fully specified, subcomponents and functions already known,

I and knowledge sources already identified. For other classes of design this need

*not be the case. Consequently, class 3 design is an excellent place to start in

* an attempt to fully understand the complete spectrum of design activity.

2.4.3. Classification as Class 3

If, during an attempt at class 3 design, all of the design alternatives fail,

then it is possible that the designer will switch to class 2 activity. This is

most likely to happen if the problem is on the border between classes or if the

designer has little experience with this type of component and has not yet fully

formed a completely satisfactory class 3 approach. We have no way as yet of

knowing whether such a distinct inter-class border exists. It appears that

* experienced designers are able to judge whether a project is class 3 or not, the

.



main clue being, of course, whether they have designed that component often

before with initial requirements that are judged to be similar.

2.4.4. General Description

It should be clear by now that we consider class 1 and class 2 design to be

outside the reach of effective contributions from AI technology at present.

Class 3 design however can benefit from other work in knowledge-based systems.

It is our working hypothesis that there is a very specific type of problem

solving behavior associated with design activity of the class 3 type.

Specifically that a hierarchy of conceptual specialists solve the problem in a

distributed manner, top-down, by choosing at each stage of the design from a set

of plans, thus refining the design. Specialists can use the expertise of other

specialists below them in the hierarchy in ways specified by the plans.

3. An Approach to Class 3 Design

3.1. Introduction

A design problem-solver will consist therefore of a hierarchical collection of

g design specialists, where the upper levels of the hierarchy are specialists in

the more general aspects of the component, while the lower levels deal with more

specific subsystems or components. They all access a design data-base possibly

mediated by an intelligent data-base assistant1 5' 21. We will first describe the
1design agents , and then the phases of their interaction.

3.2. Design Agents

3.2.1. Specialists

A Specialist is a design agent that will attempt to design a section of the

component. The specialists chosen, their responsibilities, and their

hierarchical organization will reflect the mechanical designer's underlying

conceptual structure of the problem domain. Exactly what each specialist's

responsibilities are depends on where in the hierarchy it is placed. Higher

specialists have more general responsibilities. The top-most specialist is

responsible for the whole design. A specialist lower down in the hierarchy will

1By the term "Agent" we mean a Specialist, Task, or Step -- ie. any active

module of the problem-solver



be making detailed decisions. Each specialist has the ability to make design

decisions about the part, parts or function in which it specializes. Those

decisions are made in the context of previous design decisions made by other

specialists. A specialist can do its piece of design by itself, or can utilize

the services of other specialists below it in the hierarchy. We ref er to this

cooperative design activity of the specialists as Design Refinement.

Every specialist also has some local design knowledge expressed in the form of

constraints. These will be used to decide on the suitability of incoming 7

requirements and data, and on the ultimate success of the specialist itself Cie.

the constraints capture those major things that must be true of the specialist's

design before it can be considered to be successfully completed). Other

constraints, embedded in the specialist's plans, are used to check the

Correctness of intermediate design decisions. Still more constraints are present

in the design data-base as general consistency checks.

3.2.2. Plans

Each specialist has a collection of plans that may be selected depending on the

situation, and it will follow the plan in order to achieve that part of the

design for which it is responsible. A Plan consists of sequence of calls to

Specialists or Tasks (see below), possibly with interspersed constraints. it

represents one method for designing the section of the component represented by

the specialist. The specialists below will refine the design independently,

tasks produce further values themselves , constraints will check on the integrity

of the decisions made, while the whole plan gives the specific sequence in which

the agents may be invoked. Typically as one goes down in the hierarchy, the

plans tend to become fever in number and more straightforward.

As each plan is considered to be the product of past planning, ref ined by

experience, one should not expect many failures to occur. However, as not all

combinations of values have been handled before or anticipated it is possible for

plan failures to occur due to intra-plan and extra-plan constraint violations.

3.2.3. Steps, Tasks, and Constraints

We consider a Step to be a design agent that can make one design decision given

the current state of the design and taking into account any constraints. For

example, one step would decide on the material for some subcomponent, while

another would decide on its thickness. A Task is a design agent which is

expressed as a sequence of steps, possibly with interspersed constraints. It is

responsible for handling the design of one logically, structurally, or

functionally coherent section of the component; for example a seat for a seal, or



a hole for a bolt.

A Constraint is an agent that will test for a particular relationship between two

rh or more attributes at some particular stage of the design. Constraints can occur

at almost any place in the hierarchy. For example, a constraint might check that

a hole for a bolt is not too small to be machinable given the material being

used. Constraints will be discussed further when we address failure handling.

U 3.3. The Four Phases

3.3.1. Requirements

The design activity can be considered to fall into four phases. Initially, the

requirements are collected from the user and are verified both individually and

*collectively. For example, it may be reasonable to ask for a component to be

made of lead, and for it to weigh less than 5 ounces, but the combination will

often be unreasonable. Once it has been established that the system is capable

of working with those requirements, a rough-design is attempted.

3.3.2. Rough-design

Rough-design is poorly understood at present, but it serves at least two

purposes. First, those values on which much of the rest of the design depends

*will be decided and checked. If they cant be achieved then there is little

point going on with the rest of the design. This also has the effect of pruning

the design search space, as once the overall characteristics of the design are

* established it reduces the num~ber of choices of how to proceed with the rest of

the design. Second, as any mutually dependent attributes can prevent a design

from progressing Cie. A depends on B, and B depends on A), rough-design can, as

humnan designers do, pick a value for one of the attributes and use that as if the

dependencies didn't exist.

* It appears at present that rough-design and design share the same conceptual

hierarchical structure. However, that remains to be confirmed. The rough-design

hierarchy is in general much shallower than the design hierarchy as more general

decisions are being made. We are proposing that specialists have both design and

rough-design plans to select from depending on the current phase. Not all

specialists will need both. It is entirely feasible that phases could be

intermixed during problem-solving, but we have chosen to restrict the rough phase

to be first, followed by the design phase.



3.3.3. Design

Once rough-design has completed satisfactorily, the design phase can proceed.

Design starts with the topmost specialist and works down to the lowest levels of--

the hierarchy. A specialist S begins by receiving a design request from its

parent specialist, which might include some design requirements (constraints).

It refers to the specification data-base and obtains a list of specification data

relevant to its further work. A plan is selected using these data and the

current state of the design. For example, if one of the requirements is low

cost, a plan with that quality can be selected. The exact nature of the plan

selection process is a matter for further research, and, with a language for

plans, will be a major part of the theory of design.

Thus, S fills in some of the design, then calls its successors in a given order

with requests for refinement of the design of a substructure. If some of the

substructures are independent of *each other, then they may be invoked in

parallel. The knowledge in the specialist prioritizes the plans, and invokes

alternative plans in case of failure by one of the successors. Parts of a plan

may indicate immediately that constraints cannot be satisfied. This is

considered as failure. When all of a specialist's plans fail, or when failure

can be deduced immediately, the specialist communicates that to its parent.

3.3.4. Redesign

If any failures occur during the design process then a redesign phase is entered.

If the phase succeeds then a return can be made to the design phase. At the

lowest level, failures occur when a constraint fails in some step. The system _

attempts to handle all failure at the point-of-failure before admitting defeat

and passing failure information up to its parent. A step, for example, may be

able to examine the failure and then produce another value, in order to satisfy

the failing constraint, while still retaining local integrity. This failure

handling activity and the as ,sociated redesign phase will be discrased later.

Other work on redesign in the literature has concentrated on "functional

redesign", that is, "the task of altering the design of an existing, well

understood circuit, in order to meet a desired change to its functional

specifications' 4. Here we use redesign to mean an attempt by a design agent to
change a value to both satisfy a constraint while keep as much as possible intact

of the previous design.



3.4. Communication

The main means of communication in the system is by passing information and

control between specialists across the connections forming the hierarchy. In

this way the flow of control is restrained and the system exhibits clear, well-

focused problem-solving activity. It remains to be shown whether this form of

control is sufficient, but it is based on a belief that Class 3 design systems

are "nearly decomposable",2 2 and that "the interactions between subsystems are

weak but not negligible". We believe that for Class 3 design the structure is

dominantly hierarchical and that interactions are handled by specific strategies.

Information is passed in the form of messages that can, for example, request

action, report failure, ask for assistance, and make suggestions. This rich

variety of messages is the key to handling subsystem interactions. In addition,

one part of the emerging theory of design problem-solving will be the form and

content of these design oriented messages.

3.5. Other Agents .

In general, a collection of design specialists will not be sufficient for the

design task, and will, at least, need an intelligent data-base to keep track of

the ongoing state of the design. Other specialists outside the design 'specialist

hierarchy could provide calculations, such as stress analysis, and other data-

base functions such as catalogue lookup. In a more general design system,
16requests could be made to other types of problem-solvers .It is perfectly

acceptable to consider the humian user as one of the problem-solvers, as requests

for assistance will occur at well defined points in the design with precise ..

pieces of design to do. The expert system can subsequently check the

acceptability of the results provided by using constraints. Here the usual image

of the designer controlling the invocation of analysis packages and problem

solvers is reversed.

4. An Instance of Class 3 Design

4.1. The Air-cylindere

* Let us consider a real, but not overly complex example for illustrative purposes.

In our collaboration with AccuRay Corporation, we have selected an Air-cylinder

(AC) as a suitable object for our continuing studies of design problem-solving.

Our preliminary work on design problem-solving was reported in Brown (1983)1. We .

* are now working on extending the theory and examining the issues and problems

*using the AC as our test case. The AIR-CYL design problem-solving system is



currently under development using Rutgers ELISP and FRI.2 on the OSU CIS

department's DEC system-20.
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CAPI ...... I HEAD I • .

Spring return Air actuated

Figure 1: Air-cylinder "

The AC has about 15 parts, almost all of which are manufactured by the company

according to their own designs, as their requirements are such that the

components cannot be purchased. The AC is redesigned and changed slightly for .

applications with markedly different requirements, and, consequently, the domain .

is Class 3 in type. In operation, compressed air forces a piston back into a

tube against a spring. Movement is limited by a bumper. The spring returns the

piston, and the attached "load", to its original position when the air pressure

drops.

4.2. The Conceptual Structure

An Ai : Cylinder Designer was interviewed over a period of time, the protocols

were analyzed and the "trace" of the design process was obtained. Figure 2 shows

the progress of the design over time (from left to right) and the groupings of

the decisions (from top to bottom).

Air-cylinder Dsgn

I I I I I I I I"

Init. Rough Spring Head Piston Cap Weight Cost
Constr. Dsgn Dsgn Dsgn Dsgn Dsgn Eval.& Eval.&
& ReDsgn ReDsgn
Init. I
decisions ---------------------

I Mounting Bearings Seal Air Air
Catalog holes & cavity inlet
lookup Wiper

Figure 2: Design Trace -!

The trace was subsequently analyzed to establish the underlying conceptual

_ I.



structure. For example, the Head was clearly treated as a separate conceptual

entity, as it occupied a substantial portion of the designers time and effort.

The Spring was actually designed by a different person as an essentially parallelrn activity, while the rest of the decign was "lumped together" by the designer as
the third major activity. The fact that the specialists can be fairly easily

identified, and that the plans for each specialist are also identifiable and

small in number strongly conf irms that this is a class 3 activity. on

- examination we could see that this organization tends to localize dependencies,

and allows for parallel design activity -- something of which most designers are

not able to take advantage!

AIM CYLINDER EVALUATION

/ I WEIGHT STRESS COST

SPRING HELD REST D&TA-3ASE

CAP P&R I
I\ SPECS PARTS

I \ D-B D-B
PISTON ROD

Figure 3: Partial AIR-CYL Structure

4.3. Design Agents

Currently we are considering two-level plans, where a plan consists of a set of

tasks, possibly with some in parallel; a task being of a set of steps, with each

* step corresponding to a single design decision. We are developing a language for

expressing design agents which will, when complete, allow a designer to write a

design problem-solver with only minimal assistance from the knowledge engineer.

Our group has designed and implemented a language for building diagnostic

PLAN
NAME Air Cylinder Design Plan
TYPE Design
USED BY Air Cylinder SPECIALIST
USES Spring Head Rest SPECIALISTS
QUALITY Reliable BUT Expensive
FINAL CONSTRAINTS Design details OK?
TO DO

Validate and Process Requirements
ROUGH DESIGN Air Cylinder
PARALLEL DESIGN Spring AND Head
TEST Head and Spring Compatible?
DESIGN Rest

Figure 4: A Plan
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For example, in figure 4 we show a plan, where "Validate and Process

Requirements" is the name of a task, "Head and Spring Compatible?" is the name of

a set of constraints, and "Rest" is the name of a specialist. Note that this is

a design plan. Some specialists will also have rough-design plans. A task will .

consist of the sequential use of a number of steps, and a step consists of

obtaining required information followed by calculations and a decision about the

value of a single attribute.

STEP
NAME Piston Seal Seat Width
USED BY Piston Seal
COM1MENT Written by DCB, Sept. 83
ATTRIBUTE NAME Seal Seat Width
FAILURE HANDLER

FOR DECISION FAILURE Piston Seal Seat Width FH
FAILURE SUGGESTION INCREASE Piston Thickness
REDESIGN NOT POSSIBLE
TO DO

KNOWNS FETCH Piston Thickness
FETCH Piston Material
FETCH Minimum Thickness S

OF Piston Material
FETCH Spring Seat Depth

DECISION Available IS
(Piston Thickness

MINUS DOUBLE Minimum Thickness)
Seal Seat Width IS 0.156
COMMENT Using one size only
TEST Available > Seal Seat Width?
STORE Seal Seat Width

Figure 5: A Step

Figure 5 shows a step to decide on the width of the seat for the piston seal,

where "Piston Seal" is the name of a task, "Seal Seat Width" is what is being

decided, "INCREASE Piston Thickness" is what the step will suggest if it's not

possible to make a decision, "Piston Seal Seat Width FR" is the name of the

failure handler that will analyze the problem and invoke the redesigner (not -

possible for this step), "Piston Thickness" is an attribute that should already

have been decided, and "Available > Seal Seat Width" is the name of a constraLnt.

4.4. Example of AIR-CYL operation *

The Air-cylinder plan given above calls for the use of the Head specialist. Part

of the Read design plan is as follows:-

TODO

lir'Cavity
Air Inlet

0i?!iii



The compressed air rushing into the AC through the Air Inlet is buffered slightly

for better Piston activation by a chamber, called the Air Cavity, that is cut

into the Head. The Air Cavity is designed to fit into the available space in the

Head so as not to intrude on any other cut or component. The Air Inlet enters

the Cavity through the top surface of the head, and is restricted by the size of

the Air Cavity amongst other things. If the cavity is too small the inlet will

• "not be able to enter it in a suitable way.

- The Air-cylinder design plan, after requirements checking and rough design, will

ask the head specialist to design the Head. A Head design plan will be selected

- let's presume for its "low cost" quality - and design activity will proceed

according to the plan. Eventually the Air Cavity will get designed by the Air

Cavity task, and, when that has completed successfully, the Air Inlet task will 0

be activated.

A major factor in determining the size of the cavity is how much material should

be left between it and other cuts to allow for strength in operation and for

manufacturability. Let us suppose that the low cost material chosen for the Read S

needs 1/8th of an inch clearance. The Air Inlet task discovers that the Air

Cavity is too small for it to correctly position the inlet, and, after looking to

see if some local changes can be made (ie. to the inlet), a step, and

subsequently the task, will fail. This will cause the plan to fail. Amongst the -

suggestions of how to make the design succeed will be one that suggests that th.

Read's material be changed to one which requires a smaller clearance. The next

plan to be activated will be the "strength/medium-cost" plan, which will use a

harder more expensive material. This time the plan will succeed as clearance 5
need only be 1/16th of an inch and the Air Cavity can be larger, enabling the Air

Inlet to be positioned correctly.

An edited and annotated trace of the AIR-CYL system in its present version can be

found in Appendix A.

5. Handling Failures

5.1. Our Philosophy

5.1.1. Restricted Knowledge

Much of the work on failure handling in the literature considers all relevant

knowledge to be available at failure time. If one views the problem solver's

complete internal model as the "state-of-the-world", then, as one has complete

knowledge of the form of the model and one knows that it completely captures the

• ."I ..



state of the world, it is easy to do any kind of model manipulations that one

desires2 5 . If the state-of-the-world model is in fact an incomplete one, possibly

augmented by "observations" from outside the model, then this kind of freedom of

manipulation is not available. If, in addition, the model is structured in some

way, so that at some failure point only part of the whole model is available (ie.

that pertaining to just the most local problem-solving) then the manipulations

are still further constrained. Our view is that the models of data and control

in human problem-solving are structured and probably incomplete, thus restricting S

the kinds of information available for handling failures and the manipulations

possible.

The structure of the design problem-solving system (ie. specialists, plans,

tasks and steps) provides the context in which to structure failure handling. We

will assume that at any point in the structure only the minimum knowledge is

available locally about the problem-solving task. An agent knows about the

following:-

- The agent that asked it to act

- The information passed to it by the calling agent

- The sub-agents it is able to use
%- Pc

- The information returned to it by the sub-agents that it has already
called

- All the information about its own state

- The partial design as produced by prior agents S

In addition, the specialist knows which plans are appropriate, which one has been

selected, and how it is progressing. We will restrict the information passed to

an agent from above to that which does not provide history but merely makes

requests, provides requested information, gives suggestions, and passes -

constraints. The information received from sub-agents is restricted to reports of

success or failure, and suggestions, with a minimum of information about what

took place at the lower levels of the problem-solving structure, except where

required by failure reporting. D

5.1.2. Social Metaphor

We will continue to use the social metaphor when discussing the system -- that

is, we can learn about possible behaviors of an agent in the system by 0

considering it to be a person working in a design team organized with the same

S o° .



structure as we are suggesting for the class 3 design system2. By using this
idea, and the minimum-knowledge restriction discussed above, we hope to establish

what is essential for failure handling in this kind of design activity.

- This metaphor has proven very useful in our group's other work on problem

solving, especially for diagnosis, where efficient knowledge structuring and
17

control strategies can be observed in the medical community '.We feel that
there is much to be gained by applying this strategy to the design domain too.

5.1.3. Local Decisions

In this work we are trying to make sure that all design agents detect their own

failure, are able to determine what went wrong (at least superficially), attempt

to see if they can fix it locally, do so if they can, and report failure only if

all attempts fail. Agents which have some control over other agents can use

those agents in their attempt to correct the detected problem.

5.1.4. Domain Driven

* In general, any wholesale adoption of an AI mechanism will often lead one astray.

* For example, use of complete global dependency structures and pure dependency

directed backtracking3 is inappropriate in this design domain, as it would be

unconstrained use of a mechanism in a way that did not reflect the structure of L

the problem-solving activity. This should not be interpreted to mean that we

* consider that belief revision behavior does not occur in humans, rather that

analysis of the domain should lead one to it, and that the mechanisms are surface

* forms of richer problem-solving behavior.

* 5.2. Redesign

- 5.2.1. How Redesign Occurs

Each kind of agent can have different kinds of reasons for failing. For example,

a step finds that a decision violates some constraint, a task discovers that a

step's failure cant be mended locally, a plan can fail if it is discovered that

it-s not applicable to the situation to which it is being applied, while a

* 2A discussion of this metaphor can be found in 6 and other papers in that
I issue.

* *
3 A clear and concise introduction to and bibliograph 7 for techniques such as

* these, referred to as "belief revision", can be found in



specialist can fail if all of its plans fail.

For every kind of failure a message giving details is generated and passed back

to the calling agent. The message includes, wherever possible, suggestions about
what might be done to alleviate the problem. As there are usually many kinds of

problems that can occur, an agent will first look at the message to decide what

vent on below. This is done by the Failure Handler associated with the agent.

Much of the failure analysis is provided by the system, but for some cases, for

example for constraint failures, the user (that is the person using the plan

language to write a design system) has to supply some details. For some

conditions immediate failure can be specified, for others an attempt to redesign

might be made.

The agent also has associated with it a Redesigner -- except in the cases where

redesign is not possible, and then this is specified in the declaration of the

agent. Here too, much of the redesign activity will be provided by the system,

but in some places the user needs to be quite specific. An adequate language for

flexible control of redesign has yet to be developed and it remains one of our

research goals. Consequently, for the most part redesign activity will initially

be fairly inflexible. We hope, for example, to incorporate "advice" about how to

proceed - such, as which suggestions should be ignored even though they appear

relevant.

5.2.2. Design vs. Redesign

Design and Redesign are different problem-solving activities. We are also

concerned with re-design - ie. design again. For example, if during failure

handli.ng so much has changed since the last attempt that it makes no sense to

even try redesign, then design should be attempted again.

To see that design (or re-design) and redesign are clearly different consider the

step. A step chooses the value for one attribute. For design a step is more-or-

less pure calculation in moat cases. This corresponds to a specific style of

deciding a value that a person seems to have - use known values, make a decision

(calculation), check to see of it'sa ok, make a report. This is the style used

during design and re-design.

In the case of redesign it seems that the step acts quite differently. The

suggestions it receives guide the process of deciding on a value. Suggestions

will, in some way, be 'clashed' against each other to produce a value or range of

values. If a range is produced, then local knowledge is used to select a value

from the range. The other possible result is that the suggestions are

incompatible and that there is no value.



5.3. Agent Failure

5.3.1. Constraint Failure

Behind almost all failures is constraint failure. A constraint will collect

information about the state of the desig. i, 'i v vI test some relationship between

these attributes. A constraint failing will make suggestions about what could be

causing the problem and will indicate the values that caused the failure, and

* what values would have caused success. These suggestions are entirely made on

the basis of the form of the constraint, ie. entirely local. It is up to the

agent in which the constraint is embedded to interpret these suggestions, and to

make its own more informed suggestions.

5.3.2. Step Failure

A failing step will, via its failure handler, determine what to do next. If

redesign is appropriate and possible then the redesigner for that step will be

given any available information about the failure (eg. details from the failing

constraint). Some of this redesign action will be provided by the system, and

some must be specified by the expert system implementor. If the attempt succeeds

then the step will return to its caller without any sign that a local failure

goccurred. If it fails, then the step will make its suggestions to the calling

agent and include it with other suggestions it was given. There are interesting

." issues here about how much effort a step should expend before admitting failure,

and how to reasonably capture that process in the system.

* 5.3.3. Task Failure

A task checks conditions on entry and exit, and executes a sequence of steps,

with explicitly checked constraints. Any constraints that are tested between

steps monitor the progress of the task. As currently implemented the task is an

ordered sequence of steps with no possible variation. As the task represents the |

" designer's concentrated effort in one local context (within the broader context

of the selected plan) this fixed sequence is reasonable.

If one of the task's steps fails it will receive a failure message and a

collections of suggestions. It knows which suggestions apply to which steps

below it. Knowing which steps have already been activated it can therefore

decide which o± the steps referred to in the suggestions was active most

recently. That step will then be asked to do a redesign. If it can, then there

is a good chance that the failing step can now succeed, as long as the steps

after the redesigning step but before the failing step are not disturbed by the

redesign. They will be asked, and if there is a problem then some strategy will

. . .



be selected. This a matter for further research. Clearly failures can produces

failures and so on, until the original purpose becomes obscured. Also, clearly, a

human is not able to deal with such nested failures. The simplest strategy is to

fail if an attempt to correct a failure itself fails. If an attempt to follow a

suggestion fails, then another one is tried until all of the suggestions have

been tried by the task. In that situation the task will fail, and itself make

suggestions, passing on those to which it couldn't respond.

5.3.4. Plan Failure

A plan is currently implemented as an ordered sequence of actions. To be

successful, all of the actions must succeed. Note that this doesn't imply that

nothing failed at a lower level, but merely that eventually every action in the

plan returned success. Other plans in other specialists may have failed on the

way to this success. The details of what happened below is of essentially no

concern to this specialist. We are still investigating the degree to which it is

reasonable and possible to attempt failure handling at the plan level. "" "

A plan in a specialist represents a method for designing that part, area, or

function of the device. The plans provide alternative ways of achieving the same

portion of the design, all expressed at the same level of detail. At lower

levels other specialists will also make choices. If a plan fails, all the

decisions made by the plan up to the point of failure must be retracted. That

is, the "drawing" is returned to a previous version. On real-lite drawings

(blueprints) changes are accumulated on the drawing until enough exist to warrant

producing a new version. In the design system, prior to every major activity,

the current state of the data-base is given a version identifier. If the " -

activity fails, the version need not be changed, otherwise the new version is

adopted for active use, and the old one is stored away to provide a record of the

history of the design.

5.3.5. Specialist Failure

Specialist failure on entry is a sign that conditions are in some way

inappropriate for this specialist to act. For example, a specialist may only be

able to design air-cylinders smaller than a breadbox. On entry to a specialist,

prior to plan selection, one would expect an examination of the gross conditions

of applicability, and if those are not met a failure message would be sent to the

calling agent.

Special2.at failure during plan selection can occur for a variety of reasons

- there are no plans appropriate for this situation; all appropriate plans have

been used during this call of the specialist. The first type of failure occurs
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on entry to the specialist, after it has passed the applicability tests, if no

plans are appropriate. The second kind of plan selection failure implies that

any local attempts to remedy the problems causing plan failure also failed.

Clearly the calling agent should be informed of this special situation, as it

represents the complete failure of the specialist.

5.4. Other Research

5.4.1. DESI/NASL

In McDermott's DESI/NASL system2 5' 9 failure handling is treated as just another

task for the system to handle. The system is prevented from backing up over a

previously made decision about a value. McDermott argues that, in general,. S
backing up to a choice point using a universal mechanism is not appropriate, and

that consideration must be given to all the actions and choices made since that

point and prior to the failure. The failing primitive task produces a description

of the failure, and a failure task is set up to attempt to deal with the

situation. As well as that description, the task/subtask structure, the control

trace and the recorded data dependencies are available for use. New subtasks may

be added, old subtasks restarted, old subtasks re-expressed, or heuristics

I abandoned. This is a very powerful failure handling mechanism. We feel that it

is too unconstrained and not structured enough, and more like a general

programing mechanism than a specific theory of failure handling.

5.4.2. BUILD

In the BUILD planning system Fahlman 2 8 adopts an approach similar to McDermott's.

After being frustrated by Micro-PLANNER s chronological backtracking Fahlman

wrote the system in CONNIVER using control structures that allowed "the BUILD-

PLACE-MOVE sequence to proceed in a headlong manner, with very little pre- 9

. checking of conditions", and reported that "trouble is met in a variety of ways

when it arises". lp.117J.

In the BUILD system, every function which makes a major choice includes the

declaration of a "Gripe Handler". If the subgoal selected fails in some way the 3

most local gripe handler is called with a failure message reporting the problem.

The gripe handler has access to the full environment of the failure situation,

and can also examine the bindings of the choice function. Should the decision be

made that failure is due to some decision at a higher level it may complain to p
the next higher gripe handler, otherwise the problem is handled locally. The

". problems with this method of failure handling are the same as for the DESI/NASL



system. That is, there are no constraints on the backtracking done. The BUILD

system in some ways is even less constrained than McDermott's system as it

appears to be able to backtrack in any way over any prior decision. The failure

handling behavior of the AIR-CYL system could probably be implemented in the

mechanisms provided by Fahlman and McDermott.

5.4.3. EL/SARS

The EL/ARS system for electronic circuit analysis2 9' 10 is a system that uses

dependency records to keep track of failure situations. It avoids failure

situations in further processing by using all of the recorded "NOGOOD" situations

to affect the choice of actions. As not all NOGOOD situations are relevant for

any one problem-solving situation this method is missing some essential structure

and can be inefficient. The use of 'pure' dependency structures in a global way

is unconstrained use of a technique, producing unstructured problem-solving

activity.

5.4.4. TROPIC

Latombe's design system TROPIC 3 0 ' u uses dependency directed backtracking to the

most recently contributing choice point. Failure information is attached to the

chronological trace of control flow at a point singled out at backup time as

being responsible for the failure. This is clearly better than pure chronological

backtracking, and the controlled use of failure recording is to be preferred over

the EL/ARS method. However, there is no control over the range of the backtracks

made, as the system maintains a global dependency structure.

5.5. Summary

It appears that this extended analysis of failure handling within the framework

of a class 3 design system has led us to a modified form of dependency-directed ....

backtracking controlled by suggestions and failure-handling advice. This control •

regime is complicated by the notion of attempting repair of failures by doing

redesign. The whole activity is made to work by using a data-base to represent

versions of the drawing that record the state of the design, and by a variety of

messages that produce data and control flow.

6. Theoretical and Practical Research Issues

L
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6.1. Improvements to AIR-CYL

We have learnt much during the last year as a result of our efforts in

implementing a prototype systeml and the AIR-CTh expert system for a nontrivially

complex mechanical engineering object. This implementation effort is not

complete, but we now have a better understanding of the strengths of and problems

with the approach. We feel that while the idea of design ref inement captures the

essence of design problem solving, at least in its relatively routine aspects,

mthere are several important aspects of problem solving and plan specification 6

that need continued investigation. In addition to those aspects discussed below,

we hope to improve the interface with the system to allow others to use it.

Eventually we expect to provide a graphical interface to show the development of

the design as, it progresses.

6.2. Plan Language

In our implementation, plans have shown a significant tendency to incorporate

selection schemata and cons traint-checking. In addition there is a distinct

difference between specification checking, rough design, design and redesign

activity. Thus there is a need to investigate the form and content of the plan

structures that would be useful in class 3 design problems. In order for this

K notion of design plans to find much practical application in CAD it is necessary

that generic representations for plans and their coordination be obtained.

Updating the expert system to reflect changing products and any increase in a

company's expertise will not be a practical undertaking unless such

* representations are available.

6.3. Problem-Solving

6.3.1. Direction of Refinement

It may be the case that we can alter plans depending on experience, or select

plans in a different order. This will have to be investigated closely to see

exactly what factors influence such changes. Clearly if one plan consistently

leads to failure then it should be treated as suspect, but it may merely mean

that its conditions for selection have not been adequately captured. With

parallel sections of design it may be useful to hold up one section until part of

the other has succeeded. This would be useful if one subsection is particularly

difficult to design, as it would save wasting effort on the other parallel

section.



6.3.2. Plan Selection

The issue of how plans get selected is far from resolved. While it is clear that

many pieces of information are involved we do not yet know how they are combined

during selection, or what role suggestions, or the history of the design so far

play in this selection. Plans themselves have information attached to them that

may be used during the selection. For example, a plan may be known for its

qualities, such as producing a subcomponent cheaply, or tending to succeed more

than it fails.

6.3.3. Rough Design

There is one aspect of rough-design that we have not yet tried to capture and

that is the "rough" value. For example, when designing we often start by

assigning an attribute a small range of values - "it's between 3 and 4 inches".

Values in a design system may need to have qualities of "precision", "accuracy"

and "confidence". Accuracy is captured at present by using a form that includes

a value and its tolerances - (LKGTH 2.3 0.001 0.02). Precision is to do withL

how precisely one is able to state the range of possible values -- less than 4.

While confidence has to do with how allowable it is to alter that value - a

good starting value for this is 3 inches + or - 1/10th, but if you want you can

change it if it doesn't look right". Clearly these all interact in various ways, -

and will pose problems for the system -- for example, what's "roughly 3 but less

than 4" plus (12GTH 2.3 0.001 00.02)?

6.3.4. Relaxation of Requirements

One possible way to deal with failures is to attempt to relax one or more of the

requirements. Clearly some requirements can be "softer" than others, and asking

the user for some relaxation may clear the way to a successful design. If a lot

of effort has been expended on a design by machine and human this makes a lot of

*sense. It may be possible for the system to choose requirements to relax, but a

*lot of special knowledge would be necessary to implement that. Even knowing when

to ask for a relaxation will be difficult. This is a matter for future research.

6.3.5. Performance Degradation

We suspect that as designs get to be only just class 3 the performance of the

system will degrade in interesting ways. If there are many dependencies between

attributes then the system can be expected to fail more often. By observing this

behavior, and the ease with which a design system for an object can be captured

in the plan language, we hope to be able to make some observations about

categories of design smaller than the classes that we have outlined.
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6.3.6. Automatic Construction

Another interesting possibility for the system is the automatic ordering of steps

and tasks. At present one has to be aware of the exact order that the designer

. uses in order to be sure that all required values are available before each agent

acts. Due to the commonly observed difficulty in getting ones expert to recall

exactly what he or she does, it will often be possible to get only a partial

ordering. In fact, provided the dependencies are immediately available, or can
* be deduced, the agents could be presented to the system for it to decide on a

reasonable order, in the case that the designer is is doubt or doesn't care.

6.4. Limitations of Approach

Of course, we are quite aware that there are bound to be other examples of Class

3 design tasks that cannot be brought under the plan refinement paradigm in a

natural way. There is a distinction between plan refinements in the abstract and

a particular generic class of plans which we know how to represent and refine and

handle failures with. Thus, even if it is true in principle that de.sign is a

process of choosing and refining plans in the abstract, our ability to write

expert systems for design is very much a function of the generic classes of plans

which we are able to describe and manipulate. We would like, as a result of our

research, to be able to characterize the kinds of design problems for which the

plan refinement approach will lead to effective expert systems.

6.5. Functional Understanding

One of the projects that we are working on in our expert systems research
31concerns the representation of how a device functions 31  It ought to be possible

to cleanly derive a diagnostic structure from this representation. One of the - -

tests of someone understanding a device is that person's ability to reason about

any malfunction in that device. What is the relationship of this functional
representation to the design representations that we are studying? One would

expect that the designer's view of how and why he thinks that the design is

satisfactory, from the viewpoint of meeting the functional specifications, should

have close correspondences to the functional understanding of the diagnostician. II

Making these relationships clear will be an important theoretical undertaking.

It will show how understanding how a device works, being able to design a device

to fulfill certain functional requirements, and being able to trouble-shoot a

device all share certain representations.

A.o



7. Concluding Remarks

We have presented an approach to building expert systems for a particular class

of design activity in the domain of mechanical components. Much work remains to

be done in this area before we understand what design is and how best to build

systems to do it. However we feel that by using a hierarchically structured

system with plan selection we are capturing the essential qualities of routine

design, while discovering many interesting and difficult issues.
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9. Appendix A

Annotated Trace of AIR-CYL

This is a trace generated by the system. It has been edited for brevity and

presentation in this format. The trace was only turned on for the Specialists.

The trace is of a successful design with no selection of alternative plans. It

shows the attributes designed by the system.

**** AIR-CYL Air-cylinder Design System *
* Version date: (4 26 84)
*** Todays date: (5 4 84)
*** User: DCBROWN

*** Requirements input
The following options are available :- e _

1 - to use a set of standard test/demo requirements
2 - to have requirements read from your disk file
3 -- to type them all in yourself

Note: you will be able to make alterations
*** Please type the number of your option >>>????>l

* Standard test/demo requirements to be used
From file DCB :AC-Requirements-Test.LSP

Requirements :001

III Note:
There are about 20 values given as requirements,
including the maximum operating temperature and
pressure, and the size of the envelope in which
the air-cylinder must fit.

* Do you wish to make alterations to the requirements?
Please answer YES or NO or QUIT >>>????>a

* No alterations to be made
Requirements Input Complete

Entering Specialist
O..AirCylinder...Mode - Design

It! Note:
The first part of the design plan is to check
the requirements and then do a rough-design.

,d!ii.



-- Entering Specialist
... AirCylinder ... Mode -RoughDesign

Entering Specialist
...Eead...Mode m RoughDesign

-- Leaving Specialist
.e.H.ead...Result- Success Hag

Entering Specialist
...Rest ... Mode - RoughDesign

-Entering Specialist 9.
... Cap ... ode - RoughDesign

Leaving Specialist
... *Cap..,Resultn Success Hag

Entering Specialist
...Tube.,.Mode -RoughDesign

III Note;
At any point the system can ask the user for
a value, or ask f or a value to be chocked.
This is useful in situations where it is hard to
capture the judgment being made, or in
development situations where that part of

* the design has yet has yet to be codified.

77?? ASK-USER: Tube rough volume is 4.051
Is this OK for this design?

Answer is ????>yes

Leaving Specialist
.... Tubeo.Result- Success Hag

* ---- Entering Specialist
... Piston.AndRod... Mode -RoughDesign

Leaving Specialist
...PistonkndRod..*.Result- Success Hag

Entering Specialist
,,,Bumnper... Mode o RoughDesign

Leaving Specialist
....Bumpero..Result Success Hag

-- Leaving Specialist
,.,,Rest ... Result- Success Msg

-- -Entering Specialist
.,.Spring... Mode - RoughDesign

-- Leaving Specialist
L ....Spring...Result- Success Msg

* - Leaving Specialist
o .*.AirCylinder ... Result- Success Hag



IINote:
Now do the design.

-- Entering Specialist
...Spring... Mode - Design -. 

"

???? ASK-VALUE: Spring Wire Diameter
Value is ????>.215

???? ASK-VALUE: Number of Coils
Value is ????>11

SpringMaterial - NIL
SpringOD - 0.985
SpringID - 0.77

SpringWireDiameter - 0.215
SpringFreeLength - NIL
SpringCompressedLength -- NIL .
SpringInstalledLength - NIL
SpringLoad - NIL
SpringNumberOfCoils - 1
SpringDeflectionPerCoil - NIL

--- Leaving Specialist
.... Spring...Result- Success Msg

- Entering Specialist

...Head... Mode - Design

???? ASK-USER:
Head Air Cavity volume is 0.323
Is this OK for this design?
Answer is ????>ok

III Note:
The LNGTH form below is a way of expressing
tolerances. The first figure is the value,
the second the +ve tolerance, while the third
is the -ve tolerance.

HeadWidth -- 1.5
HeadDepth - 0.97
HeadHeight -- 1.5
BeadMaterial -- StainlessSteel
HeadScrewSize - (LNGTH 0.19 5.e-3 5.e-3)
ReadCent er Cent erDi stance

-- (LNGTH 0.625 5.e-3 5.e-3)
HeadMount ingHol eDiamet er

- (0LNGTH 0.206 3.e-3 0.0)
HeadCounter SinkDiameter 5

-- (LNGTH 0.37 1.e-2 1.e-2)
HeadMaxtoFDistance

-- (LNGTH 0.31 5.e-3 5.e-3)
ReadMount ingHolesToFaceDistance

- (LNGTH 0.2455 2.5e-3 2.5e-3)
HeadWiperSeatDepth -- 0.175854
leadWiperSeatDiameter - 0.459841
HeadWiperType - UCup
HeadAirHoleToSideDistance - 0.75
HeadirHoleToFaceDistance - 0.701

_.
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HeadAirHoleDepth 0.2105
HeadAirHoleDiameter -- 0.374
HeadAirCavitylD -- 0.534
HeadAirCavityOD 1-- .089
HeadirCavityDepth 0.4565
HeadTERCenterCenterDistance -- 1.115
HeadTRlDepth -- NIL
EeadTPEDiameter - 0.19
HeadBearingThickness - 4.85e-2
HeadBearinglLength - 0.4765
HeadBearing2Length - 0.182646
HeadSealSeatWidth

- - (LNGTH 0.125 5.e-3 5.e-3)
HeadSealSeatToFaceDistance -- 0.3585
HeadSealSeatDiameter

- (LNGTH 0.5 3.e-3 0.0)
* HeadTubeSeatID

- (LNGTR 1.21 6.e-3 3.e-3)
HeadTubeSeatOD I

--- (LNGTH 1.359 1.e-2 1.e-2)
HeadTubeSeatDepth -- 6.25d-2

11l Note:
The system contains a table of standard decimal values

and is able to take the nearest higher or lover value,

or just the nearest. For example, a value of 2.4936 can
be stored as 2.5, or as 2.4844 (ie. 31164ths).

-- Leaving Specialist
....Head...Result- SuCcess Meg

I!! Note:
Once the Read specialist is completed the

Rest specialist can start.

--- Entering Specialist
* ...Rest... Mode - Design

Entering Specialist
...PistonAndRod... Mode - Design

PistonDiameter
- (LUNGTH 1.212 4.e-3 0.0)

_ PistonMaterial - Brass
" PistonThickness - 0.34375d

PistonodRole - 0.25d
PistonSpringSeatDepth -- 3.9e-2

PistonSpringSeatID - 0.754375
PistonSpringSeatOD 1-- .00062
PistonSealType -- UCup
PistonSealSeatDiameter

- (LNGTH 0.885 0.0 1.e-3 ThreeDP)
PistonSealSeatWidth

- (LNGTR 0.156 l.e-2 1.e-2 ThreeDP)
PistonSealSeatPosition --- 9.4e-2

L p3stonfreakawayCutDiameter --- 0.729
PistonBreakavayCutDepth -- 3.4e-2

P2stonNotchCount - 4
PistonNotchWidth -- 7.8e-2
PistonNotchDepth - 7.8e-2

.. .-.
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Pi stouB raz eS eatDe pth -- 7.8e-2
P2stonlrazeSeatDiameter 0.390625d

RodDiameter - (LNGTB 0.312 0.0 2.e-3)
RodLength - 4.095 -

RodThreadLength - 1.031
RodThreadType - UNF24
RodMaterial -- StainlessSteel,
RodPistonSeatDiameter -0.247

RodPistonSeatLength - 0.31
Rodlnd~flodTo~ead - 2.781

Leaving Specialist
soo.Piston.AndRod ... Result-n Success Meg

Entering Specialist
...Cap... Mode -Design

CapMaterial - StainlessSteel
CapReight - 1.5
CapWidth - 1.5
CapDepth - 0.625 ...

CaplnternalDepth -- 0.499
CaplnternalDiameter -1 .089
CapTubeSeatDepth. - 6.25d-2lo
CapTubeSeatID

-(LNGTH 1.21 6.e-3 3.e-3)
CapTubeSeatOD

- (NGTH 1.359 1.e-2 1.e-2)
CapkirloleDiameter - 0.374
CanAirffoleCent erTolackDistance

-0.313

CapkirioleDepth - 0.2055
CapBackFaceThickness - NIL
CapTitoTRDistance -1.115

CapTRDiameter
- (NGTH 0.203 5.e-3 5.e-3)

CapTlDepth - 03125
CapTRkecessDepth - 0.3125
CapTRlecessladius - 1.003
CapLargeChamferWidth - NIL
CapLargeChamferAngle - NIL
CapSmallChamferWidth - NIL
CapSmallChamferAngle -- NIL-

Leaving Specialist
.... Cap...Resultn Success Meg

- -Entering Specialist
.,,Tube... Mode w Design

TubeMaterial - StainlessSteel
TubeLength - 3.5
TubeID -- 1.214
TubeOD - 1.344
TubeChamferLength -- NIL
TubeChamferAngle -- NIL

Leaving Specialist
..#*Tube ... Result-n Success Meg



--Entering Specialist
...Bumper... Mode - Design

BumperMaterial -- StainlessSteel --

SBumperLength -- NIL 0
BumperID - 0.390625d

* BunperOD - 0.69
* BumperFlangeDiamete-------1 .059
*BumperFiangemhickuess -- 6.25e-2

* ---- Leaving Specialist
.... Bumper ... Result- Success Msg

Leaving Specialist
*...Rest ... Result- Success Msg

-- Leaving Specialist
... AirCylinder. .. Result- Success Msg

SDesign attempt succeeds
SVersion date: (4 26 84)

~-~Todays date: (5 4 84)
-**User: DCBROWN
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CSRL: A Language for Expert Systems for Diagnosis*

* Tom Bylander, Sanjay Mittal*, and B. Chandrasekaran
Artificial Intelligence Group

Department of Computer and Information Science
81 The Ohio State University

Columbus, OH 43210 USA

Abstract

We present CSRL (Conceptual Structures Representation Language) as a

language to facilitate the development of expert diagnosis systems based on a

L paradigm of "cooperating diagnostic specialists." In our approach, diagnostic
reasoning is one of several generic tasks, each of which calls for a

particular organizational and problem solving structure. A diagnostic

structure is composed of a collection of specialists, each of which

corresponds to a potential hypothesis about the current case. They are

organized as a classification or diagnostic hierarchy, e.g., a classification

of diseases. A top-down strategy called establish-refine is used in which

I either a specialist establishes and then r-fines itself, or the specialist .0

rejects itself, pruning the hierarchy that it heads. CSRL is a language for

representing the specialists of a diagnostic hierarchy and the diagnostic
knowledge within then. The diagnostic knowledge is encoded at various levels
of abstractions: message procedures, which describe the specialist's behavior

in response to messages from other specialists; knowledge groups, which
* determine how data relate to features of the hypothesis; and rule-like

knowledge, which is contained within knowledge groups.

. .

*This an expanded version of a paper of the same title which was presented

at the 1983 International Joint Conference on Artificial IntelligenceL
"Currently at Knowledge Systems Area, Xerox PARC, 3333 Coyote Hill Rd.,

.. Palo Alto, CA 94304 USA
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CSRL: A Language for Expert Systems for Diagnoas

Tom Bylander, Sanjay Mittal, and B. Chandrasekaran
Artificial Intelligence Group

Department of Computer and Information Science
The Ohio State University

Columbus, OH 43210 USA

1 Introduction

Many kinds of problem solving for expert systems have been proposed within

the AI comunity. Whatever the approach, there is a need to acquire the

knowledge in a given domain and implement it in the spirit of the problem

solving paradigm. Reducing the time to implement a system usually involves

ta',:. creation of a high level language which reflects the intended method of

problem solving. For example, EMOCIN [11 was created for building systems

based on MYCIn-like problem solving 12]. Such languages are also intended to

speed up the knowledge acquisition process by allowing domain experts to input

knowledge in a form close to their conceptual level. Another goal is to make

it easier to enforce consistency between the expert's knowledge and its

implementation.

CSRL (Conceptual Structures Representation Language) is a language for

implementing expert diagnostic systems that are based on our approach to

*This an expanded version of a paper of the same title which was presented
at the 1983 International Joint Conference on Artificial Intelligence.

"Currently at Knowledge Systems Area, Xerox PARC, 3333 Coyote Hill Rd.,
Palo Alto, CA 94304 USA '-
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diagnostic problem solving. This approach is an outgrowth of our group's

experience with 4DX, a medical diagnostic program (31, and with applying MDX-

like problem solving to other medical and non-medical domains. CSRL

facilitates the development of diagnostic systems by supporting constructs

which represent diagnostic knowledge at appropriate levels of abstraction.

First, we will overview the relationship of CSRL to our overall theory of

problem solving types and the diagnostic problem solving that underlies CSRL.

We then present CSRL, illustrating how its constructs are used to encode

diagnostic knowledge. Two expert systems under development in our laboratory

which use CSBL are then briefly described. Based on our experience with these ,,

systems, we point out where improvemnts in CSRL are needed.

2 Classificatory Diagnosis
f

The central problem solving of diagnosis, in our view, is classificatory

activity. This is a specific type of problem solving in our approach, meaning

that a special kind of organization and special strategies are strongly

associated with performing expert diagnosis. In this section, we will briefly

review the theory of problem solving types as presented by Chandrasekaran [41,

and the structure and strategies of the diagnostic task [5].

* 2.1 Types of Problem Solving

We propose that expert problem solving is composed of a collection of

different problem solving abilities. The AI group at Ohio State has been -

working at identifying well-defined types of problem solving (called generic

tasks), one of which is classificatory diagnosis. (For the purposes of this

discussion, we will use "diagnosis" in plice of "classificatory diagnosis"

with the understanding that the complete diagnostic process includes other

. . .



3

elements as well.) Other examples include knowledge-directed data retrieval,

consequence finding, and a restricted form of design.

Each generic task calls for a particular organizational and problem solving

structure. Given a specific kind of task to perform, the idea is that

specific ways to organize and use knowledge are ideally suited for that task.

Even when the specif ication of a problem is reduced to a given task within - ..

a given domain, the amount of knowledge which is needed can still be enormous

(e.g., diagnosis in medicine). In our approach, the knowledge structure for a

L given task and domain is composed of specialists, each of which specialize in

different concepts of the domain. Domain knowledge is distributed across the

specialists, dividing the problem into more manageable parts, and organizing

the knowledge into chunks which become relevant when the corresponding

concepts become relevant during the problem solving.

Decomposing a domain into specialists raises the problem of how they will

acoordinate during the problem solving* process. First, the specialists as a

whole are organized, primarily around the "subspecialist-of" relationship.

* Each task may specify additional relationships that may hold between

-specialists. Second, each task is associated with a set of strategies which-

take advantage of these relationships and the problem solving capabilities of

the individual specialists. The choice of what strategy to follow is not a

global decision, but chosen by the specialists during problem solving.
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2.2 The Diagnostic Task

The diagnostic task is the identification of a case description with a

specific node in a pre-determined diagnostic hierarchy. Each node in the

hierarchy corresponds to a hypothesis about the current case. Nodes higher in

the hierarchy represent more general hypotheses, while lower nodes are more

specific. Typically, a diagnostic hierarchy is a classification of

malf unctions of some object, and the case description contains the --

manifestations and background information about the object. For example, the

Auto-Mach expert system [61 attempts to classify data concerning an automobile

into a diagnostic hierarchy of fuel system malfunctions. Figure 1 illustrates

a fragmnt of Anto-Zfech's hierarchy. The most general node, the fuel system

in this example, is the head node of hierarchy. More specific fuel system

malfunctions such as fuel delivery problems are classified within the

* hierarchy.

PUT FIG=U I R" i

Each node in the hierarchy is associated vith a sipecialist which contains

the diagnostic knowledge to evaluate the plausibility of the hypothesis from

the case description. From this knowledge, the specialist determines a

confidence value representing the amount of belief in the hypothesis. If this

value is high enough, the specialist is said to be established.

The basic strategy of the diagnostic task is a process of hypothesis

* refinement, which we call estAblish-refine. In this strategy, if a specialist

establishes itself, then it re[insi the hypothesis by invoking its

*subspecialists, which also perform the establish-refine strategy. If its

* confidence value is low, the specialist rjects~ the hypothesis, and performs

*no further actions. Note that when this happens, the whole hierarchy below



~the specialist is eliminated from consideration. Ccher ise the specialist

suspends itself, and may later refine itself if its superior requests it.

With regard to figure 1, the following scenario might occur. First, the

fuel system specialist is invoked, since it is the top specialist in the

hierarchy. This specialist is then established, and the two specialists below

it are invoked. Bad fuel problems is rejected, eliminating the three

subspecialists of bad fuel from consideration. Finally, the fuel mixture

specialist is established, and its subpecialists (not shown) are invoked.

An important companion to the diagnostic hierarchy is an intelligent data

base assistant which organizes the case description, answers queries from the

diagnostic specialists, and makes simple inferences from the data [7]. For

example, the data base should be able to infer that the fuel tank is not empty

if the car can be started. The diagnostic specialists are then relieved from

knowing all the ways that a particular datum could be inferred from other

data.

There are several issues relevant to diagnostic problem solving which we

*will not address here. The simple description above does not employ

strategies for bypassing the hierarchical structure for comon malfunctions,

for handling multiple interacting hypothesis, or for accounting of the

manifestations. Also, additional control strategies are required when many

nodes are in a suspended state. For discussion on some of these topics, see

Gomez and Chandrasekaran [5]. Test ordering, causal explanation of findings,

and therapeutic action do not directly fall within the auspices of the

classificatory diagnosis as defined here, but expertise in any of these areas

would certainly enhance a diagnostic system. Fully resolving all of these

I..".

:I:!??

. ii *.
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issues and integrating their solutions into the diagnostic framework are

4
problems for future research.

2.3 Differences from other Approaches

The usual approach to building knovledge based systems is to emphasize a

general knowledge representation structure and different problem solvers which

use that knowledge. One difference in this approach is that the organization

of knowledge is not intended as a general representation for all problems.

Rather it is tuned specifically for diagnosis. By limiting the type of

problem to be solved, a specific organizational technique (classification

hierarchy) and problem solving strategy (establish-refine) can be used to

provide focus and control in the problem solving process.

Another difference is that the specialists in the hierarchy are not a -

static collection of knowledge. The knowledge of how to establish or reject

is embedded within the specialists. Each specialist can then be viewed as a

individual problem solver with its own knowledge base. The entire collection

of specialists engages in distributed problem-solving.

3 CS L

CSRL is a language for representing the specialists of a diagnostic

- hierarchy and the diagnostic knowledge within them. The diagnostic knowledge

is encoded at various levels of abstractions. lessage procedures describe the

specialist's behavior in response to messages from other specialists. These

contain the knowledge about how to establish or refine a specialist.

Knowledie srouns determine how selected data relate to various features or

intermediate hypotheses that are related to the specialist. The selected data

may be the values of other knowledge groups, so that a single knowledge group

. . . p'
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can "s-arize" the results of several others. Knowledge groups are composed

of rule-like knowledge which match the data against specific patterns, and 5

" when successful, provide values to be processed by the knowledge group.

3.1 Specialists

In CSRL, a diagnostic expert system is implemented by individually defining

each specialist. The super- and subepecialists of the specialist are declared

within the definition. Figure 2 is a skeleton of a specialist definition for

the Bad Fuel node from figure 1. The declare section specifies its

relationships to other specialists. The other sections of the specialist are

examined below.

PUT FIGURE 2 .E

I Since CSRL is designed to use only a simple classification tree, many

choices concerning the composition of the hierarchy must be made. This is a

" pragmatic decision, rather than a search for the "perfect" classification

tree. The main criteria for evaluating a classification is whether enough

evidence is normally available to make confident decisions. To decompose a

specialist into its subspecialists, the simplest method is to ask the domain

expert what subhypotheses should be considered next. Usually the

subspecialists will differ from one another based on a single attribute (e.g.,

location, cause). For further discussion on this and other design decisions

in CSEL, see Bylander and Smith [8].

LL

2.
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3.2 Message Procedures

The messages section of a specialist contains a list of message procedures,

which specify how the specialist will respond to different messages from its --

superspecialist. "Establish", "Ref ine", "Establish-Refine" (combines -

Establish and Refine), and "Suggest" are predefined messages in CSRL;

additional messages may be defined by the user. Below, we will examine how

Establish and Refine procedures are typically constructed.

Message procedures are the highest level of abstraction for diagnostic

knowledge within specialists. Just as in general message passing languages,

messages provide a way to invoke a particular kind of response without having-

to know what procedure to invoke. Strategies for diagnosis, such as

establish-refine, are usually easy to translate into a message protocol.

However, CSRL does not provide any way to specify and enforce message -

protocols.

Figure 3 illustrates the Establish message procedure of the BadFuel

specialist. "relevant" and "sumary". are names of knowledge groups of

BadFuel. "self" is a keyword which refers to the name of the specialist. ..

This procedure first tests the value of the relevant knowledge group. (If

this knowledge group has not already been executed, it is autmatically

executed at this point.) If it is greater than or equal to 0, then BadFuel* .:-

confidence value is set to the value of the sumnary knowledge group, else it " . -

*A specialist is not allowed to send messages to its superspecialist.

However, other message passing routes are allowed. Specifically, a specialist
may send a message to itself, across the hierarchy, and to indirect -
subspecialists. In the latter case, each interconnecting specialist is sent a
"Suggest" message and decides within its Suggest message procedure whether or
not to pass the original message downwards.
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is set to the value of the relevant knowledge group. in CSRL, a confidence

value scale of -3 to +3 is used (integers only). A value of +2 or +3

indicates that the specialist is established. In this case, che procedure

corresponds to the following diagnostic knowledge.

First perform a preliminary check to make sure that BadFuel is a
relevant hypothesis to hold. If it is not (the relevant knowledge
group is less than 0), then set BadFuel's confidence value to the
degree of relevancy. Otherwise, perform more complicated reasoning
(the sumary knowledge group combines the values of other knowledge
groups) to determine BadFuel's confidence value. .

PUT FIGURE 3 HE3E

Figure 4 shows a Refine procedure which is a simplified version of the one

that BadFuel uses. "subepecialists" is a keyword which refers to the

subspecialists of the current specialist. The procedure calls each

subspecialist with an Establish message. If the subspecialist establishes

itself (+? tests if the confidence value is +2 or +3), then send it a Refine

message.

PUT FIGURE 4 9" It

CSRL has a variety of other kinds of statements and expressions so that

more complicated strategies can be implemented. For example, a "Reset"

statement deletes the confidence value and the knowledge group values of a

specialist. This might be used when additional tests are performed, making it

necessary to recalculate the confidence value. Also, messages can be

*For convenience, many of CSRL s control constructs mimic those of

1rZMLISP; however, these constructs are executed by the CSRL interpreter, not
by using LISP EVAL. LISP code is allowed within message procedures, but only
by within a construct called "DoLisp". This is not intended to let
specialists have arbitrary code, but to allow interaction with other LISP-
implemented systems.

• . . -.

." ... ." . ." . " . '- _ -. . -. ' '- ".. ." . '- .-. . . .' . '-. - ' .. '- . -. '- . . . : '. ' • '. . . . . .- " .. ,-. .~ . . _' '".. .' ' ,. . .. % ,,..,-,. .:..
. . . . . . ' - -% -. - -- - - - -: - ',-',-' - - .% -- _". . . " '_.' ' .' ', _''_'. . _' -- '_." ".''. -. -. , ," ." ." .. " _'._" ..'
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parameterized and message procedures can declare local variables.

3.3 Knowledge Groups

The kgs section of a specialist definition contains a list of knowledge

groups, which are used to evaluate how selected data indicate various features

or intermediate hypotheses that relate to specialist's hypothesis. A

knowledge group can be thought of as a cluster of production rules which map

the values of a list of expressions (boolean and arithmetic operations on

data) to some conclusion on a discrete, symbolic scale. Different types of

knowledge groups perform this mapping differently, e.g., directly mapping

values to conclusions, or having each rule add or subtract a set number of

"confidence" units.

Knowledge groups are intended for encoding the heuristics that a domain
-I

expert uses for inferring features of a hypothesis from the case description.

The main problem is that this inference is uncertain - there is rarely a one-

to-one mapping from data to the features of the hypothesis. The way that this

is handled in CSRL is borrowed from the uncertainty handling techniques used

in MDZ [9].

Each feature or intermediate hypothesis is associated with a knowledge

group. The data that the domain expert uses to evaluate the feature is

encoded as expressions in the knowledge group. These are usually queries to a

separate data base system. Each combination of values of the expressions is

then mapped to a level of confidence as determined by the domain expert. This

set of knowledge groups becomes the data for another knowledge group, which

determines the confidence value of the specialist from the confidence values

-~ .. - .A *... 2,-- ..>;
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of the features.* By examining the results of test cases, the knowledge groups
0

are relatively easy to debug since the attention of the domain expert can be

directed to the specific area of knowledge which derived the incorrect result.

As an example, figure 5 is the relevant knowledge group of the BadFuel .

specialist mentioned above. It determines whether the symptoms of the

automobile are consistent with bad fuel problems. The expressions query the

user (who is the data base for Auto-Mach) for whether the car is slow to S

respond, starts hard, has knocking or pinging sounds, or has the problem when

accelerating. "AskY=?t." is a LISP function which asks the user for a Y, N, or

U (unknown) answer from the user, and translates the answer into T, F, or U,

the values of CSRL's three-valued logic. Each set of tests in the if-then

part of the knowledge group is evaluated until one matches. The value

corresponding to this "rule" becomes the value of the knowledge group. For

example, the first rule tests whether the first expression is true (the "?"

means doesn't matter). If so, then -3 becomes the value of the knowledge

group. Otherwise, other rules are evaluated. The value of the knowledge

group will be 1 if no rule matches. This knowledge group encodes the

following diagnostic knowledge:

If the car is slow to respond or if the car starts hard, then
SadFuel is not relevant in this case. Otherwise, if there are
knocking or pinging sounds and if the problem occurs while
accelerating, then Badfuel is highly relevant. In all other cases,
DadFuel is only mildly relevant.

PUT FIGUt 5 aml L

Figure 6 is the stary knowledge group of BadFuel. Its expressions are

*Actually, any number of knowledge group levels can be implemented.
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the values of the relevant and gas knowledge group (the latter queries the

user about the temporal relationship between the onset of the problem and when

gas was last bought). In this case, if the value of the relevant knowledge

group is 3 and the value of the gas knowledge group is greater then or equal

to 0, then the value of the siary knowledge group (and consequently the

confidence value of BadFuel) is 3, indicating that a bad fuel problem is very

likely.

PUT FIGURE 6 HERE

3.4 Comparison with Rule-Based Languages

There is nothing in CSRL that is not programmable within rule-based_-

languages such as OPS5 (101 or EMYCIN E1]. The difference between CSRL and

these languages is that CSRL makes a commitment to a particular organizational

and progra-ming style. CSRL is not intended to be a general purpose -

representation language, but is built specifically for the classificatory

diagnosis problem. It is possible to program in a rule-based language so that

there is an implicit relationship between rules so that they correspond to

knowledge groups and specialists. R1, although not a diagnostic expert

system, is an excellent example of how one creates implicit grouping of rules

in such a system E11]. The central idea underlying CSRL is to make these

relationships explicit. The expert system implementor is then relieved from

trying to impose an organization on a organization-less system and is free to

concentrate on the conceptual structure of the domain. Also, there is a

greater potential to embed explanation and debugging facilities which can take

advantage of the expert system organization.

. . . . . . . . .

. . . . . . . . . . . .. . . . . . . . . . . .
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3.5 The CSBI Environment

The current version of CSRL is implemented in INTERLISP-D and LOOPS, an

object-oriented programming tool. Each specialist is implemented as a LOOPS

class, which is instantiated for each case that is run. The LOOPS class
a1

hierarchy is used to specify default message procedures and shared knowledge

groups, making it easy to encode a default establish-refine strategy, and

letting the user incrementally modify this strategy and add strategies as

desired. A graphical interface displays the specialist hierarchy, and through

the use of a mouse, allows the user to easily access and modify any part of

the hierarchy. Additional facilities for debugging and explanation are being

implemented.

4 Expert Systems that use CSRL

4.1 Auto-Mech

Auto-Mech is an expert system which diagnoses fuel problems in automobile

- engines [6]. This domain vas chosen to demonstrate the viability of our

approach to non-medical domains, as well as to gain experience and feedback on

CSBL.* The purpose of the fuel system is to deliver a mixture of fuel and air

to the air cylinders of the engine. It can be divided into major subsystems

(fuel delivery, air intake, carburetor, vacuum manifold) which correspond to

" initial hypotheses about fuel system faults.

Auto-Mech consists of 34 CSRD specialists in a hierarchy which varies from

four to six levels deep. Its problem solving closely follows the establish-

refine strategy. Before this strategy is invoked, Auto-Mech collects some

*Auto-Mach was developed using an early version of the language.

C • c* . . . .". * ; - 2 : :i: : ; : 2 - 2: - .-. . - .:
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initial data from the user. This includes the major symptom that the user

notices (such as stalling) and the situation when this occurs (e.g.,6

* accelerating and cold engine temperature). Any additional questions are asked

*while Auto-Mech's specialists are running. The diagnosis then starts and

continues until the user is satisfied that the diagnosis is complete. The

user must make this decision since the data that Auto-Mach uses are very weak

at indicating specific problems and, more importantly, Auto-Mech is unable to

make the repair and determine whether the problem has been fixed.

A major part of Auto-Hech's development was determining the assumptions

that would be made about the design of the automobile engine and the data that-

the program would be using. Different automobile engine designs have a

*significant effect on the hypotheses that are considered. A carbureted

engine, for example, will have a different set of problems than a f uel

*injected engine (the former can have a broken carburetor). The data was

* assumed to come from commnonly available resources. The variety of computer

analysis information that is available to mechanics today was not considered

in order to simplify building Auto-Mach.

4.2 Red

Red is an expert system whose domain is red blood cell antibody -

* identification (12]. An everyday problem that a blood bank contends with is

*the selection of units of blood for transfusion during major surgery. The

primary difficulty is that antibodies in the patient's blood may attack the

foreign blood, rendering the new blood useless as well as presenting

*additional danger to the patient. Thus identifying the patient's antibodies

and selecting blood which will not react with them is a critical task for -

nearly all red blood transfusions.
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Mhe Red expert system is composed of three major subsystems, one of which

is implemented ir. CSRL. The non-CSRL subsystems are a data base which

* maintains and answers questions about reaction records (reactions of the

patient's blood in selected blood samples under a variety of conditions), and

a overview system, which assembles a composite hypothesis of the ant~ibodies0

that would best explain the reaction record [13]. CSRL is used to implement

specialists corresponding to each antibody that Red knows about (about 30 of -

the most common ones) and to each antibody subtype (different ways that the .

antibody can react).

L ~The major function of the specialists is to rule out antibodies and their .*-

subtypes whenever possible, thus simplifying the job of the overview

subsystem, and to assign confidence values, informing overview of which

antibodies appear to be more plausible. The specialists query the data base

for information about the test reactions and other patient information, and

also tell the data base to perform certain operations on reaction records.

An interesting feature of Red is how it handles the problem of interacting

hypotheses. It is possible for the patient's blood to have practically any

* number or combination of antibodies, making it very hard for a single

- specialist to determine how well it will fit with other specialists in a0

composite hypothesis. In Red, each specialist is encoded to assume that it is

independent -it looks at the data as if no other specialist can account for

the same data. The knowledge of how the specialists can interact is lef t to

the overview subsystem. This would be problematic if few' specialists could

rule themselves out, but so happens that in this domain, it is rare to have

b.. more than a few antibodies that cannot be independently ruled out. Thus Red's

CSRL subsystem makes overview's problem solving computationally feasible since

-. 79
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it considerably reduces the amount of search that would otherwise be

necessary.

5 Needed Improvements in CSRL

The largest flaw in CSRL is that there is no strategy that determines when -

diagnosis should stop. Currently, the default procedures simply ask the user

if the current diagnosis is satisfactory. Some notion of what it means to

account for the data needs to be added to the language. The work on Red's

overview system is a step in this direction, but there needs to be more

integration of overview and CSBL (currently overview starts after the

specialists are finished), and a better understanding of what kinds of

*interactions can occur between two hypotheses. Progress in this aea would

* also help increase the focus of the diagnosis, i.e., the diagnosis could

concentrate on accounting for the most important manifestationWs. -

Another problem is the meaning of the confidence value of a specialist. In

* MDX, this value was directly associated with the amount of belief in the

*specialist. However in both Auto-Mech and led, this meaning had to be

slightly altered to fit the purposes of the expert system. In Auto-Mech the

confidence valug is used to indicate whether the hypothesis was worth

pursuing. In Red it is used to indicate the specialist's plausibility given--

*the independence assumption mentioned earlier. It is not possible in either

-expert system to confirm a specialist without outside help. In Auto-Mech a

* repair or highly specific test must be performed while in Red all the

*specialists must be considered together. This does not create a problem for

* the process of establish-refine problem solving, but makes it difficult to

*explain what the confidence value means. Any explanation facility mustJ

understand the assumptions that are being made to make coherent explanations.
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6 Conclusion

We believe that the development of complex expert systems will depend on

the availability of special purpose languages with organizational and problem-

solving tools that match the conceptual structure of the domain. CSBLJ
em S.

represents an initial step in this direction. It provides facilities to

organize diagnostic knowledge in accordance with the structure of the domain.

In particular, CSRL's constructs facilitate the encoding of rule-like and .

strategic knowledge into appropriate abstractions: knowledge groups, message

procedures, and specialists.
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FIGURE 1

Fuel System Problems

Bad Fuel Problems Fuel Mixture Problems

........................

Low Octane Water In Fuel Dirt In Fuel

FIGURE 2

(Specialist BadFuel
(declare (superspecialist FuelSystem)

(subspecialists LowOctane WaterinFuel Dirtln~uel))
(kg. ... )9 (message$ ... )

FIGURE 3

(Establish (if (GE relevant 0)
then (SetConfidence self aimary)

else (SetConfidence self relevant)))

FIGURE 4

(Refine (for specialist in subapecialists
do (Call specialist with Establish)

(if (+? specialist)L then (Call specialist with Refine))))
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FIGURE 5

(relevant Table
(match (AskYNU? "Is the car slow to respond")

(AskYNU? "Does the car start hard")
(And (AskYNU? "Do you hear knocking or pinging sounds")

(AskYNU? "Does the problai occur while accelerating"))
vith (if T ? ?

then -3
elseif ? T ?

then -3
elseif ? ? T

then 3
else M)

FIGURE 6

(summar~y Table
(match relevant gas

with (if 3 (GE 0)
then 3

elseif 1 (GE 0)
then 2 .

elseif ? (LT 0)
then -3))
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UFigure 1: Fragment of a diagnostic hierarchy

Figure 2: Skeleton specialist for BadFuel

Figure 3: Establish procedure of Bad.Fuel

Figure 4: Ref ine procedure

Figure 5: relevant knowledge group of BadFuel

Figure 6: s1-ary knowledge group of BadFuel
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